Nástup elektroaut: je vůbec reálný? 

swarm Listopad 18, 2017 Auta 39 komentářů

Zatímco nejprodávanější ojetinou v ČR je stříbrná dvojková Ovce v TDI, svět se postupně ubírá jinam. Státy se předhání, kdo zakáže spalovací motory v osobních autech jako první, a předhazují více či méně realistická data. Nejvíce se mluví o budoucnosti v podobě aut s elektromotory a energii skladované buďto v bateriích, nebo ve vodíku. Jedno elektrické auto jsem měl před časem možnost delší dobu užívat, což vzbudilo můj zájem o problematiku. Tímto článkem bych se chtěl podělit o (nejen) má zkoumání.

fiat-500e

Asi měsíc jsem měl možnost jezdit všude pár let starým Nissanem Leaf, což je elektroauto „pro chudé“. Jde (resp. minimálně tehdy šlo) o auto, které je nejlevnější mezi těmi s velikostí a prostorem na úrovni použitelné pro přepravu více než dvou lidí a jejich čivav. Kdysi stálo asi 700 tisíc v základní výbavě a Nissan si nechával draze připlácet za různé jinak běžné funkce jako například tempomat.

Auto je to z mnoha úhlů pohledu hrozné. Kvalitou zpracování se člověku vybaví něco za 200-250 tisíc a podvozkem, ani řízením to není o moc lepší zážitek. Do toho je ještě potřeba připočíst obecně svérázný přístup Nissanu k ergonomii a snahu výrobce udělat auto hlavně odlišné – i za cenu, že odlišné bude znamenat horší a odporující desítkám let evoluce.

Zkušenosti se samotným autem jsem lehce ironickou formou už kdysi popisoval na Facebooku (123), takže se nebudu zbytečně opakovat.

Normálně bych si asi článek tohoto typu odpustil, ale toto téma evidentně přitahuje fanatiky šířící nesmysly z obou táborů a takoví diskutéři z Novinek, ti už mají dávno jasno (ochutnávka jen na vlastní nebezpečí). Je tedy snadné uvěřit naprosté pitomosti, zejména když ji šíří mainstreamová motoristická média. Šel jsem proto pro informace raději za lidmi z vědeckého prostředí, o jejichž znalostech, ani objektivitě nepochybuju. V článku je především výcuc odpovědí na otázky, které jsme si kolektivně stanovili. Než se článek dostal do této finální formy, byl upravován a doplňován asi dva měsíce ve volném čase po večerech – to jen pro vysvětlení, proč tu moc článků poslední dobou nevycházelo.

Nic tady (ani jinde) neberte jako svatou pravdu, spíš jen jako další vstup pro vlastní kritické myšlení. K informacím jsem se snažil doplnit buďto přímo zdroje, nebo odkazy na wikipedii jako rozcestník, když bylo zdrojů více.

Máme pro ně dost elektřiny?

Tohle je asi nejčastější otázka a překvapivě hodně lidí bez vhledu do problematiky dokáže z fleku vypálit, že určitě ne. Nedávno jsem si někde přečetl tvrzení, že by byly potřeba minimálně další tři Temelíny, a to by snad ani nešlo o nahrazení všech aut těmi elektrickými s bateriemi.

Dle dostupných zdrojů (např. denik.cz) se za rok 2016 spotřebovalo asi 5,39 miliardy litrů nafty a 2,09 miliardy litrů benzínu. Budu záměrně počítat, jako by se veškeré palivo spotřebovalo v autech, což v praxi samozřejmě není (berme to jako horní odhad). Vezmu-li v potaz, že hustota je 725 kg/m3 pro benzín, resp. 840 kg/m3 pro naftu a že výhřevnost je 42,7 MJ/kg pro benzín (11,9 kWh/kg… ano, baterka Leafa by se „vešla“ do dvou kilo benzínu), resp. 41,9 MJ/kg pro naftu (11,6 kWh/kg), dostanu se na stálý výkon 8,1 GW.

nissan-leaf-spotreba

Moje průměrná spotřeba v Leafu (50 % dálnice, 50 % město)

bmw-x3-spotreba

Pro nás, kteří zachraňujeme planetu v autech s šestiválcovými benzínovými motory bez turba, jsou čísla spotřeby elektroaut důvěrně známá. Změnily se jen jednotky, ve kterých se udávají.

Elektrická auta jsou nicméně proti těm spalovacím efektivnější, dejme tomu že přibližně třikrát, takže i vypočtený stálý výkon by se měl třikrát snížit. Přemýšlel jsem, zda jsem nebyl příliš velkorysý k elektroautům, ale v Nissanu Leaf se dalo bez problému jezdit za 12 kWh (resp. 43,2 MJ) na 100 km. Nafta má výhřevnost přepočtenou na litr 35,2 MJ/l, takže spotřeba Leafa je ekvivalentní spotřebě 1,2 litru nafty na 100 km. I třikrát méně efektivní naftové auto by tedy muselo jezdit stále jen se spotřebou 3,7 litru na 100 km. Samozřejmě, kdo by se v tom chtěl více rýpat, může vzít v potaz ještě ztráty v elektrické síti (v ČR do 7%, tj. účinnost přenosu 0,93) nebo ztráty nabíjením (~0,90). Já to teď budu ignorovat. Stejně tak bychom při srovnání taky mohli započítat u naftového auta účinnost rafinerie (pro naftu 0,86, pro benzín 0,83; zdroj) nebo ztráty vlivem převozu tankerem (někde jsem četl hodnotu 0,72 vypočtenou na základě informací z hofstra.edu, ale neověřoval jsem). Tady bych ještě dodal, že neplatí ten často opakovaný mýtus o neefektivitě rafinerie potřebující na výrobu litru benzínu tolik energie, že by to stačilo elektrickému autu k ujetí stejné vzdálenosti jako benzínovému na získané palivo (zdroj). Vzniklo to zjednodušením a přepočítáním veškeré energie, kterou rafinerie spotřebuje, přestože spousta je jen teplo, které se získává spalováním ropy (navíc zanedbali, že se v ní současně vyrábí vedle benzínu i další produkty). Zas tak hrozné to není.

Zpět k výpočtu. Po přepočtení na vyšší efektivitu elektroaut tedy vychází stálý výkon 2,69 GW. Instalovaný výkon elektráren v ČR je (resp. byl) 20,5 GW (zdroj, data pro rok 2012). Lepší bude počítat jen se 17,0 GW po odečtení obnovitelných zdrojů, které dávají reálně mnohem méně výkonu (než je jejich udávaný instalovaný), a přečerpávacích elektráren, které jen akumulují.

spotreba-dle-tydne-v-roce

Spotřeba dle týdne v roce (zdroj)

U spotřeby jsem našel data k roku 2008 (týden v rocezměny za srpenzimní měsíce), ale nepředpokládám extrémní změnu. Spotřeba zřídkakdy přesáhne 11,5 GW, což dává dostatečnou rezervu pro elektroauta, pokud by se nabíjela rovnoměrně během dne. Pokud by se měla nabíjet jen v noci (8h ze dne), budou nároky třikrát vyšší, tedy zpět 8,1 GW (ale v době, kdy je zátěž soustavy nižší). Velmi teoreticky by se tedy i toto dalo většinu roku utáhnout. Reálně by to nejspíš nešlo – síť musí být taky redundantní, aby bylo možné elektrárny odstavovat a opravovat, takže v tomto maximalistickém případě by se něco stavět muselo. Určitě by to ale nebyly tři další Temelíny. Čas na přípravu navíc je, protože obměna aut stejně bude pozvolná a nepřijde „přes noc“.

Stačí zásoby Lithia na baterie všech aut?

Dnes již zastaralý Tesla Roadster má kapacitu baterie 53 kWh (wikipedia) a mělo by v ní být 8,5 kg lithia (quora). To dává 0,16 kg/kWh (novější hodnoty se špatně shání). Těžitelné zásoby lithia jsou v tuto chvíli 14e9 kg s produkcí 32,5e6 kg/rok (wikipedia). V případě, že bychom tedy chtěli 100kWh baterie pro každého a počítali bychom s množstvím lithia dle zmíněné zastaralé baterie Roadsteru, dá nám to 875 miliónů baterií s tím, že ročně jich lze vyrobit dva milióny.

Naproti tomu aut je miliarda a vyrobí se jich ročně 60 miliónů (worldometers.info). Zhodnocení nechám na čtenářích. Běžná auta určitě nebudou mít 100 kWh baterie ještě dlouho (teď mají nové modely okolo 30-40 kWh) a také novější technologie potřebují méně lithia na jednu kWh, takže toto je pochopitelně odhad co nejméně příznivý k elektroautům. Z mého pohledu samozřejmě nemá cenu vytěžit všechno (dostupné) lithium jen pro auta. Novější typy baterií jsou na spadnutí a tam by mělo množství lithia ještě klesnout, takže v případě pozvolného přechodu se tu nerýsuje žádný katastrofický scénář.

A co ekologie lithiových baterií?

Nejtoxičtější je v baterii nikl a kobalt, nejdražší je kobalt (wikipedia). Kobalt nicméně nemusí být ve všech bateriích (například LiFePo jej nepotřebuje). Lithium je nyní tak levné, že se nevyplatí baterie recyklovat. Těžba lithia je ale zatím omezená – se zvýšením poptávky půjde cena nahoru a začne se těžit i na místech, kde se to dosud příliš nevyplatilo. Až cena vzroste, brzy se dostaneme do stavu, že i recyklace bude ekonomicky zajímavá. Údajně je navíc potenciál k tomu, že baterie se budou zlevňovat, přestože cena lithia poroste.

Ekvivaletní energie (zdroj) potřebná pro výrobu jednoho kilogramu Li-Ion baterie odpovídá asi 1,6 kg ropy (zdroj). Velká baterie Tesla Model S s 85 kWh váží 540 kg, což tedy dle přepočtu představuje 864 kg ropy. Kilogram ropy se bere jako 11,63 kWh, což dá ve výsledku pro celou baterii 10,0 MWh. Pokud budu uvažovat spotřebu Tesly (S) 190 Wh/km, odpovídá to ujeté vzdálenosti 53 tisíc kilometrů (pro naftové auto by to odpovídalo vzdálenosti okolo 18 tisíc kilometrů). Výroba takové baterie tedy vyžaduje přibližně desetinu energie, která přes ni za celou životnost proteče.

Vodík a palivové články

Auta s palivovými články jsou technicky mnohem složitější řešení. V případě PEMFC (Proton Exchange Membrane Fuel Cell) je potřeba udržovat vhodnou vlhkost membrány, aby nedošlo k zastavení reakce nebo přímo poškození článku, a palivo musí být perfektně čisté bez příměsí, jinak dojde k rychlému opotřebení článku. Článek po vypnutí motoru nesmí zamrznout, a aby mohl fungovat, bude potřebovat teplotu nad 0 °C. V praxi se bude muset na optimální teplotu ohřát před startem, takže nejspíš nebude možné v chladnějším prostředí rovnou vyjet. Dalo by se to sice řešit menší baterií navíc („hybrid“), ale zas to komplikuje návrh (tímto směrem se nicméně ubrala Toyota Mirai, která tím nejspíš kompenzuje nejen starty, ale také přidává možnost rekuperace). Tohle všechno jsou spíše technické detaily, které uživatele nemusí trápit do doby, než se to dotkne spolehlivosti. Předpokládám však, že vzhledem k velkému rozdílu složitosti obou návrhů, se to na spolehlivosti podepsat musí.

Při masové produkci palivových článků by cena za kW výkonu mohla klesnout asi na $55 (wikipedia). U auta s výkonem motoru 80 kW (jako Leaf) jde o $4400 – zhruba sto tisíc korun. Dle informací z roku 2015 byla životnost článku 2500 provozních hodin (= 120 tisíc km) s tím, že by se chtěli časem dostat na dvojnásobek. Zatím by to ovšem znamenalo investici 100 tisíc korun na každých 120 tisíc km, pokud realita nebude ještě horší. Pravidelná výměna by tedy nejspíš nevycházela výhodněji než u baterií.

Účinnost (tank-to-wheel, tj. s palivem již v nádrži) auta založeného na palivových článcích je okolo 45 %, při vysoké zátěži 36 %. Honda se chlubí, že má 60 %, ale nesděluje v jaké zátěži (maximální teoretická účinnost ideálního palivového článku je 83 %). Zdroj, který odkazujeWikipedia, se pak ještě snaží zohlednit další neefektivity provozu takového auta. Hodnoty bohužel vypadají vycucané z prstu, takže je berte spíše pro zajímavost. Uvádí se tam, že od vyrobeného vodíku k jeho spotřebě pohonem kol by se ještě daly započítat neefektivity vlivem stlačení (0,90), distribucí (0,90), „tankováním“ (0,97) a nějaké další ztráty uvnitř auta (0,902). Těch zmiňovaných 45 % by ve výsledku bylo vynásobeno 0,64, což dává účinnost 29 % pro auto s nádrží na stlačený vodík („plant-to-wheel“ nezohledňující, jak byl vodík vyroben). V případě auta se zkapalnělým vodíkem (kde by se do nádrže vešlo víc paliva), jsou dle autorů ztráty kvůli kterým by se původní účinnost musela vynásobit 0,49, což dává jen 22 % (stejný dokument uvádí pro elektroauto účinnost 66 %).

Ve výše zmíněných číslech však ještě pořád není zahrnuta efektivita výroby vodíku. Efektivní a čistý způsob by byl pomocí tepelného rozkladu vody vysokoteplotním jaderným reaktorem. Ty se však běžně nepoužívají a pochybuju, že zrovna v tomto případě na ně dojde. Další možností je vyrábět vodík z fosilních paliv, což je preferovaná varianta už nyní. V aktuální komerční produkci vodíku (zdroj) jsou nejvíce zastoupeny zemní plyn (48 %), ropa (30 %) a uhlí (18 %). Tato varianta už samozřejmě tak ekologická není, ale má zdaleka nejmenší nároky na investice do infrastruktury, takže má i největší podporu (je to řešení, aby ropný a těžařský průmysl nepřicházel o příjmy). Použije se to, co už existuje pro plyn, ropu i uhlí a na konec cesty k zákazníkovi (do měst,…) se umístí parní reformační stanice. U těch je problém, že při reformaci vzniká CO2 a ještě je potřeba teplo. Je potřeba vysoká teplota – asi 1000 °C – a to je moc na to, aby šlo použít odpadní teplo odjinud. Nejpravděpodobnější je tedy cesta k získání tepla spalováním části fosilního paliva (takže další CO2).

Mirai_trimmed

Toyota Mirai je krásnou ukázkou toho, že i nejnovější vodíková auta se ještě snaží vypadat zbytečně futuristicky (Wikipedia)

Z hlediska životnosti aut (resp. jejich palivových článků) je problematická čistota paliva získaného touto cestou. Například v zemním plynu jsou příměsi síry, které se musí odstranit opakovaným procesem PSA. Množstvím opakování se určí, jak moc čisté palivo nakonec bude, a lze očekávat, že dodavatelé budou postupně v rámci ekonomické optimalizace hledat takovou úroveň, která auto nezničí okamžitě, ale zároveň je co nejlevnější. Problémů s kvalitou paliva se nejspíš ani po odchodu od benzínových a naftových motorů nezbavíme.

Lokální možností výroby je elektrolýza vody, pro kterou na vstupu potřebujete akorát čistou vodu a zdroj energie. Nejoptimističtější odhady hovoří o účinnosti až 70 %. Realita, pokud se něco nezměnilo, bývá spíše okolo 50 %. V nejhorším případě bychom si tak museli výše zmíněné účinnosti aut ještě podělit dvěma. Tohle je přitom část vodíkové ekonomiky v představách Němců: vyrábět větrnými elektrárnami nepotřebnou energii a měnit ji na vodík a v případě potřeby zas měnit vodík na energii. Při něčem takovém se přinejlepším zachová čtvrtina až třetina energie, ale asi je to lepší než nic. Elektrolýza vody je v současné době používána pro 4 % celkové komerční produkce vodíku a nesměřuje to k tomu, že by se vlivem vodíkových aut mělo toto číslo zvýšit (jednak kvůli efektivitě a jednak kvůli absenci silného hráče, kterému by se vyplatilo za tuto cestu lobovat).

Bod varu vodíku je -252,9 °C, takže ve zkapalnělém stavu má palivo uvnitř nádrže teplotu pod touto hranicí. Pokud nebudu aktivně ochlazovat nádrž, bude docházet k vyvařování. Nádrž se zkapalněným vodíkem už zkoušeli u BMW (zdroj) a o obsah nádrže jste přišli už za 10 až 12 dní, aniž byste ujeli jediný kilometr. Teď už se ubírá zájem automobilek snad jen k nádržím se stlačeným vodíkem, kde jsou ztráty nesrovnatelně nižší (ačkoli nějaké jsou stále – vodík je malý a umí si najít cestu ven přes spoustu materiálů).

Stlačení v nádrži auta se dnes dělá na 70 MPa (energy.gov), což je nějakých 62 kg/m3 (o dva řády více než u LPG a dvakrát více než u CNG). Hustota zkapalnělého vodíku je 70 kg/m3 (chemické-listy.cz), což není o moc lepší, přihlédnu-li k nižší efektivitě celého procesu. Na druhou stranu, zkapalnělá forma je bezpečnější. Když bouchne nádrž natlakovaná na 70 MPa, tak to bude asi pořádná peckovačka, která vám spolu s autem v okamžiku sfoukne i dům, v jehož garáži bylo zaparkované. Nádrže jsou z polyuretanu a uhlíkových vláken a udrží tlak jen do 110 °C. Auto proto musí mít pro případ poruchy systém, který výbuchu zabrání pomocí řízeného hoření (jet fire release) – vývojem se podařilo snížit délku plamene ze čtyř metrů na dva. Přesto je dobré připomenout, že plamen hořícího vodíku není za denního světla téměř vidět, takže při chození kolem čerstvě bouraných aut s vodíkovým pohonem bych byl opatrnější (na hyresponse.eu lze najít výborný článek pojednávající o nádržích na stlačený vodík).

toyota-mirai-hydrogen-storage-tank

Rozmístění nádrží Toyoty Mirai (hyresponse.eu)

Zatím ještě nejsou dostatečná data z nehod a závad aut s vodíkovými články. Existují ovšem data z CNG autobusů a ta stojí za přečtení. Chybí tam sice případ mechanického poškození, protože většina nehod byla od hoření ničeho jiného, ale ve stručnosti je dobré zmínit, že mechanismus řízeného hoření ještě neznamená, že to v praxi nemusí explodovat. Pokud dojde k explozi 120litrové nádrže na CNG tlakované „jen“ na 20 MPa, samotná tlaková vlna do 30 metrů rozbije okna a do 12 metrů zabije člověka. Pokud jde o případné odletující úlomky, tak ty se mohou proletět klidně sto metrů.

Názorná ukázka exploze tlakových láhví

Auta s palivovými články po přihlédnutí ke všem problémům nevnímám jako zajímavá. Z ekologického hlediska však může být daleko závažnější problém, před kterým varují někteří vědci (theozonehole.comcaltech.edu). Tedy, že vodík, pokud unikne do stratosféry, může být příčinou tvorby ozónové díry. Reakcí s kyslíkem vzniká vodní pára, která ochlazuje stratosféru, což podle některých simulačních modelů snižuje rychlost produkce ozónu pod rychlost jeho odbourávání. Počítalo se s tím, že asi 10-20 % H2 unikne do stratosféry. Možná, že by bylo možné přijít s vhodným technickým řešením, aby se H2, ještě než vystoupá, sloučil s O2, ale zdá se, že řešení tohoto problému zatím není na pořadu dne. Taky je možné, že se teď do vodíkových aut nalijí miliardy dolarů, aby se to o několik let později zase zakázalo.

Saze a pneumatiky

Jeden z argumentů těch, kteří by nejradši zakázali všechna auta a nahnali lidi do MHD a na kola (a že takových je, hlavně ve vedení měst), se týká částic z pneumatik. Těch je údajně více, než co auto vyprodukuje spalováním nafty. Používá se to jako argument, že elektrická auta nic nevyřeší (brzdové destičky zde zanedbám, neboť v elektrickém autě se díky rekuperaci opotřebovávají mnohem méně).

Vezmu-li v potaz normu EURO4, což by odpovídalo aktivnímu vozovému parku v ČR (auta od roku 2005), celková hmotnost částic by měla být do 0,025 g/km. Po ujetí 80 tisíc km by jich tedy mělo vzniknout do dvou kilogramů. Je však potřeba vzít v potaz, že tato měření se provádí po zahřátí motoru v „laboratorních podmínkách“, které neodpovídají reálnému provozu (což by se mělo brzy konečně změnit), a v autech k tomu patřičně upravených (s nejnižší výbavou, bez zadních sedaček, s odpojeným alternátorem,…). To, kolik aut jezdí s přemostěným filtrem ani radši nebudu zahrnovat. Lze jen očekávat, že realita bude o dost horší.

Pneumatika u průměrného auta střední třídy by v případě, že bychom ji vyměnili na začátku sezóny (zimní/letní) při pocitu, že už ji celou nedá, měla ze sebe za život obrousit asi 1,4 kg– pro všechny čtyři kola se dostáváme na hodnotu 5,6 kg. Udělal jsem si malou anketu mezi přáteli a dopočítali jsme se někam k výměně po ujetí 50 tisíc km na jedné sadě. Za 80 tisíc km jde tedy o hodnotu 9,0 kg ošoupané gumy (je to jen hrubý nástřel, ignoroval jsem některé parametry jako například prázdná místa daná vzorkem, protože ani ostatní parametry neznám přesně).

Poměr devíti kilogramů částic z pneumatik proti dvěma kilogramům z výfuku zní pro pneumatiky velmi nepříznivě, ale ve skutečnosti to není až zas tak zlé. Velikost částice při odírání moderní pneumatiky je údajně 2,5 až 10 mikrometrů. Starší dokument na epa.gov, kde se provedlo seriózní laboratorní měření, dokonce uvádí, že přes 80 % částic je větší než 10 mikrometrů. V pneumatikách je navíc síra, která jako vedlejší efekt způsobuje, že se částice elektrostaticky lepí k sobě (primárně tam je, aby guma rychle nezpuchřela). V praxi tedy vdechnuté částice neprojdou do těla daleko a nejspíš je pak vykašlete nebo vysmrkáte (asi jako po kvalitně stráveném večeru na motokárách v uzavřené hale).

ground-tire-particle-size

Velikost částic při odírání pneumatik (epa.gov)

Norma EURO4 velikost částic vůbec neřeší, takže stačí udělat filtr tak, aby pochytal „pár“ těch největších (nejtěžších) a problém je z pohledu výrobce vyřešen. Až norma EURO5 velikost nepřímo omezuje, protože stanovuje také počet částic (6e11 částic na km), nicméně není úplně jasné, do jak malých částic se to vlastně měří (protože ty opravdu malé je problém zachytit). V případě částic vzniklých nedokonalým hořením se mluví o velikosti 6 až 30 nanometrů (Wikipedia). Ty už jsou karcinogenní (dokážou proniknout skrz buněčnou membránu a dokonce i do jádra buňky, kde díky své vysoké reaktivitě ničí DNA) a mám velké pochybnosti, jak moc je dokážou moderní filtry vůbec zachytit. Najít na toto téma skutečně kvalitní výzkum není snadné – co se dá najít, jsou většinou články s mizivou výpovědní hodnotou, případně na první pohled nesmyslnou metodikou měření.

Z mého pohledu jsou tedy pneumatiky mnohem menším problémem. Na hmotnost je toho z nich sice o něco více, ale v o několik řádů menším množství větších a méně nebezpečných částic.

Závěrem

Část automobilek se udává směrem bateriových aut a část zas směrem vodíkových aut. Někteří raději investují do obou řešení. Po letech v korporaci mě to ani nepřekvapuje, protože i kdyby tomu nikdo ve firmě nevěřil, někdy mohou přijít neočekávané události, které jedno z řešení zásadně zvýhodní. A v takovém případě je dobré mít něco v záloze (ostatně ještě před lety viděl koncern jasnou budoucnost v TDI…).

The future is Audi TDI clean diesel. This is Truth in Engineering.“

Souboj baterek a vodíku v tuto chvíli vidím především jako boj ropného a těžařského průmyslu s energetickými korporacemi. Vodík je extrémně složité hi-tech řešení, jak si zajistit odbyt fosilních paliv i v případě, že se postupně benzínová a naftová auta z trhu vytlačí. Má proto velmi silnou podporu takto orientovaných korporací a investuje se do něj velké množství peněz. O rozpočtu a tlaku lobby u druhé strany však také nepochybuju. Ať už nakonec vyhraje cokoli, skoro bych si vsadil, že technologická čistota řešení a ekologie nebudou hrát při rozhodování žádnou roli.

Sám vodík jako dobrou budoucnost nevidím, ale fascinuje mě, kolik problémů se už během vývoje dokázalo překonat až do stavu, že dnes je něco takového již připraveno pro nasazení v provozu. Při výběru auta dám ale raději přednost baterkám.

Z elektrických aut jsem už řídil kromě Nissanu Leaf také BMW i3, Fiat 500e a KIA Soul EV. Na některých z těch aut je znát jejich příslušnost k první masové generaci elektroaut, což zahrnuje všechny ty šílenosti při umisťování ovládacích prvků, podivný vzhled a nestandardní provedení přístrojové desky. Asi to bylo všechno nutné pro získání pozornosti – elektroauta se potřebovala odlišit. Teď už ovšem přichází další generace aut a u ní se výrobci snažili mnohem více trefit do vkusu většinového řidiče, protože až ten z nich může udělat masovou záležitost. Ergonomie se také zlepšila a i ta „lidovější“ auta se snaží být řidičsky zajímavější.

Z pohledu řidiče, se moc přechodu na elektroauto nebojím. Než to přijde, dojde ještě ke zlepšení dojezdu, který je asi největším praktickým nedostatkem. Moje představa, která není nereálná, je tak 350-400 kilometrů bez omezování v pohodlí. Další nedostatek, který je ještě potřeba vyřešit, jsou nabíjecí stanice na cestách. V Praze jich je dost, ale po ČR je situace z mého pohledu pořád dost zoufalá. Naštěstí se začalo investovat do infrastruktury a věřím, že do pěti let to bude mnohem lepší. Za deset se už současnému stavu budeme asi jenom smát.

leaf-2013-interier

leaf-2018-interier

Rozdíl v interiéru mezi starou (caricos.com) a novou (motortrend.com) generací Nissan Leaf. Konečně se návrháři zaměřili na ergonomii.

Sám mám rád auta s klasickými atmosférickými benzínovými motory. Líbí se mi jejich jednoduchost a sametový chod a nejspíš nějaké budu mít, dokud mi to nezakážou. Koncept bateriových elektrických aut je mi ale také sympatický, protože jde opět o maximálně jednoduché řešení s minimem komponent, které se mohou pokazit. Vyzkoušel jsem si, že i s elektromotorem pod kapotou může být zábava. Pokud vezmu svou nejdelší zkušenost (Leaf), motor byl na celém autě zdaleka to nejlepší. Předjíždění byla vyloženě lahůdkou a akcelerace po městě byla taková, že ani konvenční auta s více než dvojnásobným výkonem neměla šanci. Jakmile se dá nějaký použitelný elektromotor do auta, kde bude také přesné řízení a dobrý podvozek, bude to také radost za volantem. A že to bude bez řazení? Polovina mých aut stejně byla s automatickou převodovkou a v 90 % situací denního ježdění mi to tak i vyhovovalo.

kdyz-auto-tak-chrochtak

Na příchod elektrických (případně vodíkových) aut se těším i jako obyvatel města. Mor zvaný TDI a každé ráno čuchání smradlavých studených nafťáků vyrážejících z periferie Prahy do centra… to je něco, o co se s radostí připravím. A až to jednou přijde (a ono to přijde), nejspíš si zlepšení vzduchu ve městech všimnou i ti, kteří na diesel teď nedají dopustit.

Pokud někoho článek namíchnul a bude mi to teď mít potřebu vytmavit v komentářích, diskuzi se nebráním. Musí však být věcná, slušná a podpořena validními zdroji. V opačném případě je vysoká pravděpodobnost, že někdo z moderátorů komentář zamítne.

Komentáře k článku

  1. 1. Radek  19.11.2017  0:25:49

    Pěkný článek. Jen poznámka: Mám to jen z druhé ruky od kamaráda hasiče, který mi mezi řečí sdělil, že cca před rokem byl u nás minimum hasičských aut (pokud si to pamatuji tak, že na Moravě jsou dvě?), schopných uhasit hořící elektromobil, protože klasicky vodou se to hasit nedá a baterie se prostě vypnout asi nedá.

    A moc si nedovedu představit za jak dlouho budou dostupnější hasící auta, ale rád se nechám představit. Na druhou stranu asi ne vždy auto začne hořet.

  2. 2. Matej  19.11.2017  1:06:27

    Skvelý článok, ešte by ma zaujímala jedna vec, resp. argument hejterov, a to pripravenosť el.siete na masový rozmach elektroáut

  3. 3. Patrik Šimůnem  19.11.2017  1:20:27

    Moc děkuji za autorův čas a práci co tomuto článku věnoval! 🙂 Samotnému se mi také libí technika spalovacích motorů. Mám to jako koníček. Ale elektry jsou podle mě super řešení pro každodenní hrnutí do práce a s dětma do školky a na výlety za nákupem.
    Sám jsem se zaměřil taky na rozdil v narocnosti na věci, co se muzou u spalovaku po a u elektry ne.

    Co nemusis resit u elektroauta:
    Výměna oleje a filtru, Alternator, regul dobijeni, Prevodovku, Spojku, Starter, Dpf filtr, Lambdu, Vahu vzduchu, Vstrikovace, Podavaci cerpadlo, Vyfuk celkove, Mensi opotrebeni brzd, Vzduchovy filtr, Palivovy filtr, EGR ventil, Katalyzator, Hlava, ventily, tesnení, Rozvody, Vymena svicek, Zapalovani celkove, Startovaci baterie, Kliková hřídel, ojnice, Pístní sada, kroužky, V hodne pripadech turbo

  4. 4. Lukáš  19.11.2017  12:06:57

    Díky za článek. Probíhající „elektronizace“ aut se hádám projevuje na ceně a znalostní náročnosti opravy, tak si říkám, jaké požadavky tohle bude mít na servisy (starší lidé učící se nové postupy, celková náročnost práce…). Vadí mi ale, jak moc se některé věci tváří ekologicky, když jejich výroba je sama pořád neekologická (výše zmíněná otázka levnějšího řešení).

    Například recyklace jaderného odpadu a používání množivých reaktorů dává smysl, protože se jinak jedná o vyhozené teplo, izotopy využívané v medicíně a RTG pro vesmírné sondy nám dochází, ale z politického hlediska se izotopy omezují a levnější je skladovat prakticky nespotřebované uranové tyče. Což mě oklikou vede k samotné generaci energie pro elektroauta.

    Jestli chceme snižovat neekologické zdroje v energetice, budeme je muset něčím nahrazovat. Jaderné bloky mají svojí životnost a už léta se u nás odkládá stavba nových. Pro mě není moc řešení přejít na elektroauta zatímco vesele pokračujeme v pálení biomasy. Ekologičtější to sice je, zvlášť pokud elektrárny umožňují lepší filtrování, nespalujeme v aglomeracích atd. Současně ničemu nepomáhá vylesňování, daňové úniky korporací a vykořisťování v Asii, ale to lidé na očích nemají. Elektroauta sice řeší kvalitu života našeho blízkého okolí, ale těžko se mi zavírají oči před věcmi co jdou ruku v ruce a které se tímhle nezmění :/

  5. 5. jt  19.11.2017  16:21:51

    Na téma elektromobility, emisí apod. vyšly snad jen dva další slušný český články:

    https://www.svetmobilne.cz/emise-co2-u-elektromobilu-tesla-horsi-nez-bmw/4645

    a

    https://www.svetmobilne.cz/elektromobily-kolik-potrebuji-temelinu/4808

    jinak jsou to jen domněnky a přesvědčování té či oné skupiny.

    Takže díky za další slušnější článek.

    Zajímavý by byl delší test nového Leafu, s větší baterkou. ale zase je nesmyslně drahý.
    Ten „starý“ je fakt jen do města a těsně okolo něj (což ale řeší docela dost lidí).

  6. 6. Python.P  19.11.2017  16:38:06

    [1] Pokud to vemu kolem a kolem, tak přesně tak to je a momentálně jsou obě auta v Brně…

    Vodou to hasit nejde, ono ruku na srdce, i když začne hořit obyčejné auto, tak stejně shoří. Málo kdy se to povede zachránit.

    Jinak jako vždy super článek.

  7. 7. Kamil2  19.11.2017  22:25:28

    Výborný článek. Půjde to postupně, evolucí. Lepší akumulátory, rozvíjející se infrastruktura. Ovšem třeba myslet na erár. Spotřební daň. Obávám se, že až elektromobily se stanou standardem, na rozdíl od počáteční podpory bude zavedena spotřební daň z elektřiny používané pro silniční provoz. Že každý elektromobil bude mít registrační měřič. Neb bude zaveden jiný způsob zdanění. Zdanění výroby elektřiny i pro vlastní spotřebu. Fuj.

  8. 8. Kamil2  19.11.2017  22:29:26

    [5] Elektromobil jako druhé auto, pro každenní dojiždění za prací.

  9. 9. r443  20.11.2017  13:05:13

    Dobrý článek – informačně bohatný, věcný a zároveň prostý ideologie a vyhrocených emocí, to se u tohoto tématu jen tak nevidí.

  10. 10. swarm  20.11.2017  19:29:21

    [1] Nemusí to začít hořet. Stejně jako nemusí začít hořet klasické spalovací auto po srážce/závadě. Záleží na taky technologii baterie. Pokud se rozšíří LiFePo baterky, tak ty třeba nezačínají hořet při přetížení. Pokud je však zapálíš od něčeho jiného, tak budou hořet asi stejně jako ostatní lithiové typy.

    Jak říká Python.P – jakmile se to rozhoří, tak máš smůlu i u klasického auta. Pořád je to ale podle mě lepší, než co se stane u aut s CNG nebo ještě hůře s vodíkem (baterka totiž bude pouze hořet, ale neexploduje všude okolo). Ostatně jeden z těch zdrojů ohledně CNG autobusů dává hezkou představu:

    „Theoretically, the pneumatic burst of a 130L tank at a pressure of 200 bar releases an energy equivalent to the detonation of about 1.85 kg of TNT (8.7MJ).“

    Nebo z praxe z jednoho z popisovaných výbuchů:

    10 minutes later at 6:51 am, the front cylinder exploded causing slight and directional damages to the environment within a distance of 100 m. Damages were caused by tank debris (tank n°1 damaged the roof of anadjacent house after a 30 m fly) and overpressure (poster frame unhooked and damaged sliding shutters 60 m away from explosion). As it burst, tank n°1 also propelled the adjacent tank to the other side of the road (10 m away). The tank n°1 ruptured in large pieces whereas carbon fiber could be found as far as 150 m away. Tank n°1 valve and associated fuse have not been found after the accident. Bursting noise could be heard at a 5 km distance. Firemen did not report anynoticeable fireball though they felt a transient heat.

    … myslim, že do CNG autobusů teď budu nastupovat s mnohem větším respektem 🙂

  11. 11. swarm  20.11.2017  19:54:09

    [3] Ano, když se podíváš do moderního elektroauta, tak tam skutečně skoro nic není – v tom je ta krása. Právě hledisko jednoduchosti řešení je pro mě důvod, proč bych se nehrnul do hybrida. Tam máš najednou všechno dvakrát a ještě řešíš způsob, jak ten výkon rozumně spojit. Poruchovost musí být logicky při stejných postupech výroby vyšší.

    [4] Ekologie tak, jak je předkladaná masám, je dnes často spíš o marketingu. V první řadě jde o zisk a každý hráč tedy tlačí tu technologii, ze které jemu plynou největší/nejjistější příjmy. Například o biomase a ekologické zátěži, kterou ten německý koncept energetiky způsobuje, bych raději ani nechtěl mluvit. To je k pláči. Elektroauta sice neřeší všechny problémy lidstva (a ani většinu), ale všespásné řešení nikdy nepřijde. Vždycky to bude o podobných malých krůčcích na mnoha frontách.

    O servisy bych se nebál. Spousta úkonů je stejně o připojení diagnostiky na sběrnici auta, vyčtení chyby a postupování při výměně/proměření dle servisního manuálu s přihlédnutím do servisní databáze značky/servisu. To bude všechno stejné. Hodně bude pořád oprav karoserií. U lidí, co opravují motory, část přejde na něco jiného a část to bude dělat pro radost dál i v době, kdy už budou mít „spalováky“ jen největší nadšenci. Stejně ta změna bude velmi pozvolná. Představa, že tady za deset/patnáct let nepotkáme žádné spalovací auto, je asi daleko od reality.

    [5] Nový Leaf by mě zajímal, ale myslim, že zařídit si tak týdenní zápůjčku by byl nepřekonatelný problém. I kdyby to třeba šlo, asi by mi to nestálo za to úsilí. Pokud někde bude možnost aspoň projetí, tak do toho určitě půjdu. To auto je zajímavé a teď konečně i poměrně hezké.

  12. 12. kjiefijf  21.11.2017  18:40:50

    [11] – [3] No hybrid zbastlený tak, že se někam ke klasickýmu motoru narve i elektromotor a baterky je paskvil. Toyotí HSD s planetovou převodovkou je o něčem jiném – je to jako hybrid navržené od začátku, promyšleně a ve statistikách spolehlivosti je Prius vždy na prvních místech. Není to trvalé řešení vhodné na vždy, ale pro přechodné období, než se konečně vyvinou pořádný baterky to je docela slušný mezikrok.

  13. 13. Roll  22.11.2017  8:26:15

    Na projetí jsem chtěl navrhnout carsharing EMUJ, ale vidím, že začátkem listopadu ukončili činnost. Asi to nakonec nebyl tak skvělý nápad..

  14. 14. Duranga  22.11.2017  20:49:49

    Kvalitní článek. Na stejné téma mě zaujal tento blog: http://petr-kubac.blog.cz/1612/alifaticke-uhlovodiky-zenou-prirodu-i-civilizaci

    Šlo by zachovat naše uhlovodíkové hospodářství, které máme vyladěné sto lety pokroku. Pomocí vysokoteplotního jaderného reaktoru rozkládat vodu na vodík a kyslík, a z H2 a vzdušného CO2 vyrábět např. alkoholy. Tím se uzavře cyklus, při dokonalém spálení je výsledkem opět CO2 + H2O; hurá, máme prakticky bezemisní dopravu a teplárenství. Bohužel je to zatím hudba daleké budoucnosti, vývoj v jaderné energetice dvakrát rychle nepostupuje. Četl jsem i o upravené fotosyntéze, ale to bude ještě později. Zatím tu budou pro chudé smradlavé diesely a pro bohaté elekromobily. Snad se to podaří zlomit, i ve spalovacích motorech pokračuje vývoj a třeba HCCI od Mazdy vypadá nadějně.

  15. 15. Kam2  24.11.2017  14:24:26

    Zatím hlasuju pro hybridní předokolku s elektromotory na zadních kolech, dobíjitelnou ze sítě, s čistým elektrickým dojezdem alespoň 40 km, dělající z předokolky příležitostnou čtyřkolku, výkonovou rezervou zlepšující jízdní vlastnosti a snižující spotřebu a exhalace.

    Co zatím s omezeným dojezdem čistých elektromobilů omezujícím jejich univerzální použitelnost? Stylový přívěsný vozík s elektrocentrálou, stačilo by 20kW, pracující v optimálním režimu.

  16. 16. Kam2  24.11.2017  14:32:23

    [14] To by šlo. Alkoholy spotřebovat v palivovém článku, neprodukujícím oxidy dusíku. Výhodný je metanol, ovšem překážkou jeho využití je lidská blbost a zhovadilost.
    Co se týče vodíku, je projekt na jeho bezpečném uskladnění v krystalové mřížce. Základní výzkum toho je i tady, experimentálně zkouší Mazda. Problémem je neláce materiálů, kovů řady „vzácných zemin“.

  17. 17. klusacek  25.11.2017  23:16:06

    [14] takto konstruovany hybrid ma stale nevyhodu v prilisne slozitosti. Ja hlasuji spis pro elektroauto s dojezdem 300 km s pripadnym range extenderem (zajimavy je napriklad linearni spalovaci motor, ktery by v principu sel zabudovat do stredoveho tunelu (pred 10ti lety ho uspesne vyvijeli na CVUT, ale webove stranky jim jiz nefunguji tak to asi nedopadlo obchodnim uspechem)).

    Takto si predstavuji idealni vyvoj prinejmensim do doby, nez se akumulatory zlepsi natolik, ze bude bezny dojezd 800 km na jedno nabiti (coz by odpovidalo kapacite zhruba 120 kWh, pokud bych chtel jezdit bez omezovani se).

    Az budou akumulatory sice uz levne, ale stale tezke, pak by mela smysl modifikace toho co nabizela Tesla a tedy ze vam vymeni celou baterii misto abyste cekali na jeji nabiti. Jen s jednim malym rozdilem, ze vasi puvodni baterii by vam nikdo nebral.

    Ve “vymenych stanicich” na dalnicich byste si mohli ke sve zakladni baterii pro jizdu po meste s dojezdem 300 km pridat dalsi moduly, dalkovou trasu byste brali energii z nich a po vyjeti z dalnice a vraceni vybitych modulu do jine vymenne stanice byste se svoji, stale jeste nabitou, baterii dokoncili posledni usek cesty ve meste.

    Melo by to vyhodu, ze ve meste by melo auto mensi spotrebu a mensi obrus kol diky nizsi hmotnosti a zaroven na rozdil od reseni Tesly, ktera vam vymeni celou baterii byste tu svoji zakladni meli zabudouvanou stale, takze byste se nemusel bat, ze vam pri vymene daji vice opotrebovany kus, nez ktery mate. Myslim, ze tenhle psychologicky faktor zpusobil, ze majitele Tesel nemeli o sluzbu zajem.

    Pri vetsi zasobe baterii na vymenne stanici by je navic bylo mozne dobijet nizsimi proudy, coz by prodlouzilo jejich zivotnost (misto aby se nabijelo malo baterii rychle, nabijelo by se vetsi mnozstvi pomalu, tak aby pocet pripravenych baterii za hodinu byl stejny).

  18. 18. klusacek  25.11.2017  23:17:05

    [17] — mela to byt pochopitelne reakce na [15]

  19. 19. klusacek  26.11.2017  0:13:26

    [16] Podle wikipedie je prekazkou vyuziti methanolu zatim nedostatecny merny vykon palivovych clanku s primou premenou:

    https://en.wikipedia.org/wiki/Direct-methanol_fuel_cell

    Methanol ma tendenci difundovat membranou na katodu kde bez uzitku shori. Proto se nepouziva cisty, ale redeny vodou, ktera tento jev omezi. Sice tim stoupne ucinnost, ale zase se snizi vykon clanku, takze je treba volit urcity kompromis. Podle wiki pracuje vetsina clanku s primou premenou tak, ze zmari zhruba polovinu paliva.

    Jeste existuji clanky s neprimou premennou. Vlastne je to reformacni jednotka na methanol (pracujici pri 300°C) nasledovana vodikovym palivovym clankem. To by uz asi slo, ale plati pro to nektere vyhrady recene v clanku k vodikovym autum, tedy ze palivove clanky zatim maji malou zivotnost, takze jejich vymena vyjde financne srovnatelne s vymenou akumulatoru a ze 80 kW blok palivovych clanku je srovnatelne velky s 24 kWh baterii Nissana Leafa, ktera take dava cca 80 kW vykon.

    Nadrz na methanol, pumpa, kompresor a reformacni jednotka nejspis zaberou podobne misto jako nadrze na stlaceny vodik, takze jsme tam kde jsme byli, jen s tim rozdilem ze nehrozi takova exploze.

    Nicmene, tady bych jeste ocekaval prostor pro zlepseni, takze bude zajimave sledovat jestli bude vyvoj baterii rychlejsi nez vyvoj tohoto.

  20. 20. klusacek  26.11.2017  15:41:41

    [2] Kapacita prenosove soustavy VVN by mela stacit, za predpokladu, ze hustota rozdeleni nabijenych elektroaut priblizne kopiruje rozdeleni ostatnich spotrebicu. V prvni casti clanku je ukazano jak kolisa spotreba a je nastineno, ze nabijeni aut by bylo chytre rizeno, aby probihalo tak, ze toto kolisani vyrovna. Pokud prenosova soustava utahla vykonove spicky, mela by utahout i staly vykon o teto hodnote.

    Detailnejsi odpoved rozdelim do 2 casti. Nejprve se budu venovat rychlonabijeckam, ktera ale povazuji spis za okrajovou zalezitost, ktera se bude vyskytovat podel dalnic, aby umoznila dalkove jizdy. V dalsim prispevku pak zminim pomale nabijeni pres noc a na parkovistich.

    Pro rychlonabijecky (nebo vymenne stanice popsane v [17]) by bylo treba natahnout draty VN, kvuli vysokemu maximalnimu prikonu.

    Uvazme napriklad cerpaci stanici na ktere muze zaroven tankovat 8 aut, pocitejme, ze tankovani i se zaplacenim trva 5 minut, a doda dojezd 700 km a predpokladejme ze pumpa je 100% vytizena.

    Ekvivalentni nabijeci stanice by musela byt schopna dodavat nasledujici vykon: Pri spotrebe aut 150 Wh/km musime nabit 150*700 Wh = 105 kWh na jedno auto. Krat 8 aut kazdych 5 minut. To je 8*60/5=96 aut za hodinu, tedy celkove bude maximalni prikon takove dobijeci stanice 10 MW, mozna spis 12 MW pokud odhadneme shora ztraty pri transformaci, usmerneni a nabijeni na 20%. 12 MW je podle

    http://diskuse.elektrika.cz/index.php/topic,33449.0.html

    maximalni zatizeni beznych 22 kV linek (posledni komentar ktery rika, ze 3MW je zhruba 1/4 kapacity 22kV vedeni), takze by se v zavislosti na vzdalenosti mozna vyplatilo vest energii k nabijeci stanici rovnou 110 kV vedenim, coz uz je ale poradna stavba.

    Nyni pocitejme kolik dobijecich mist by takova stanice musela mit. Rekneme, ze elektroauto ma kapacitu na 300km, ale na nabijecku nikdy neprijede uplne vybite a rychlonabijeni funguje jen do asi 80% kapacity, takze pocitejme, ze nabijime energii na dalsich 200 km, coz je .15*200=30 kWh. Rekneme, ze nabijeci stojan muze davat max. 120 kW (jako Tesla Supercharger), takze nabijeci cas bude 30kWh/120kW=0.25 h. Se zaparkovanim rozkoukanim se a zapojenim konektoru by dobijeni melo trvat pod 20 minut. To znamena 4* dele nez tankovani a proto musime mit 4* vice parkovacich mist, tedy 8*4=32. Problem je v tom ze misto 700 km jako pri natakovani benzinu vam nabijeni doda jen 200 km. Takze budete muset bud pouzivat vetsi baterii nebo nabijet casteji, coz ale zpusobi, ze k jedne stanici nam bude prijizdet 700/200-krat vice aut. Takze ve skutecnosti potrebujeme jeste tolikrat vic nabijecich mist, coz je 32*700/200=112.

    Vsimeme si, ze jakmile bude takovych nabijecek podel dalnic vic, tak prumerny pocet pozadovanych nabijecich mist nezavisi na tom jestli nabijite kratce malou kapacitu nebo dlouho velkou. Takze jsme mohli pocitat tez takto: Vykon ekvivalenti cerpaci stanice je: 700 km * 8 * 60/5 aut/h * 150Wh/km = 10 MW. Kazde nabijeci misto dava vykon 120 kW, tj. potrebujeme 10 MW/120 kW = 84 mist (duvod proc prve vyslo 112 je ten, ze jsme vypoctenych 15 minut na nabiti prodlouzili na 20, aby se zohlednil cas na zaparkovani a odjeti).

    Takze rychlonabijecka s kapacitou bezne benzinky neni uplne mala stavba (s prihlednitim k nutne stavbe VN vedeni), ale na druhou stranu to neni nic nerealizovatelneho. Pri spojeni s restauraci nebo obchodnim domem a pouzivanim vetsich baterii aby doba nabijeni byla kolem 45 minut ale jen jednou za 600 km, ma podle me velkou sanci byt akceptovana.

    Tentyz odber plati i pro vymenne stanice s tim ze by bylo potreba min vymennych mist, protoze vymena baterie by trvala do 2 minut.

  21. 21. Kamil2  28.11.2017  13:51:17

    Baterie pro výměnu by musela být standardizována a vozidlo by muselo umožnit standardní výměnu, to znamená standardizované uložení ve standardizované konstrukci. Navíc vyřešit skladování a nestejnou reálnou kapacitu oproti nominální.
    Standardizovanost? Aby nás přešlo nadšení, představme si automobil jako notebook…

  22. 22. swarm  28.11.2017  20:57:15

    [21] Vyměnitelná primární baterie je podle mě málo reálná do chvíle, než by jedna automobilka ovládala trh s elektroauty (což se zdaleka neblíží). Dovedu si však představit standardizovaný modul pro sekundární baterii – tam se dá ve jménu nějaké zásadní funkce klidně dělt ústupek typu výrazného ubrání prostoru v kufru (u menších aut) atd.

    Že to není u notebooků – za to může čistě fakt, že to není pro většinového zákazníka potřeba. Ve chvíli, kdy je baterka zařízení za x stovek tisíc, je situace úplně jiná.

    Odchylky v kapacitě, pokud se bavíme o celém modulu, nejsou podstatné. Skladování by asi problém taky nebylo, protože takovou baterii by sis nejspíš jen pronajímal a provozovatel služby by se snažil všechny baterie samozřejmě co nejvíc točit.

  23. 23. klusacek  30.11.2017  22:26:28

    [2] (pokracovani [20]) Rychlonabijecky jsou fajn, kdyz jedete na delsi cestu, ale baterie je lepsi nabijet pomalu. Jednak to prospeje jejich zivotnosti, ale hlavne nepozadujeme po siti tak velky proud.

    Jiz dnes nabijeni funguje tak, ze auto rekne jaky maximalni nabijeci proud baterie snese (zavisi to na jeji aktualni teplote a stavu nabiti) a nabijecka nabiji timto proudem nebo nizsim, pokud ho z nejakeho duvodu nemuze dodat. Napriklad pokud prijede druhe auto ke stejnemu sloupku a v souctu by pak byl pozadovany proud vetsi nez maximalni, ktery dokaze nabijecka dat.

    Domu si muzete koupit treba toto:

    http://www.smartev.cz/produkt/smart-ev-box/

    Je to nabijecka ktera hlida proud u hlavniho jistice domu a do auta pousti takovy proud, aby celkovy prikon domu nepresahl proud jistice. Pokud nabijite pres noc, tak i pomerne malym prikonem (2 kW) natlacite do auta za 8 hodin kolem 12 kWh (pocitam pesimisticky jen 80% ucinnost nabijeni). Na to ujede Tesla S typicky 65 km, a Nissan Leaf typicky 85 km. Osobni auta za den najedou v prumeru 40 km (podle pekneho shrnuti https://www.svetmobilne.cz/elektromobily-kolik-potrebuji-temelinu/4808 na
    ktere upozornil komentar [5]) a o prumer tu skutecne jde pokud chceme vedet zda-li takove nabijeni pretizi sit ci nikoliv, pokud by ho praktikovali vsichni.

    Jde to ale resit i lepe. Zatim to enegeticke firmy jeste neumoznuji, ale blizi se doba zavadeni tzv. „Smart Grid“ elektro rozvodu, kdy se cena elektriny bude menit nekolikrat za sekundu v zavislosti na nabidce a poptavce, a vase auto, lepe receno nabijecka, na to bude reagovat. Takze si treba nastavite, ze do zitra budete potrebovat 6 kWh a nabijecka se bude snazit odebirat elektrinu, kdyz je nejlevnejsi, ale tak aby nakonec do stanoveneho casoveho limitu auto nabila.

    Az takle budou nabijeny stovky tisic aut, povede to ke stabilizaci site a bude diky tomu mozne provozovat nektere uhelne elekrarny na plny vykon (tj. s vyssi ucinnosti) misto toho aby bezely jen jako zalozni zdroj. A nebude
    pritom nutne zapinat dalsi zalohy — pri nedostatku vykonu se jen zvysi cena, na coz zareaguji nabijecky snizenim odberu, coz bude ekvivalentni tomu jako by horka zaloha zacala dodavat proud.

    Timto zpusobem si dovedu predstavit realizovane i dobijeci sloupky na parkovistich na sidlisti. Ne ze by tedy braly elektrinu z poulicniho osvetleni, jak obcas nekdo navrhuje (na to urcite nestaci dimenzovane
    prurezy vodicu), ale slo by pouzit silove vedeni, ktere vede z trafostanice k jednotlivym panelakum a sloupky jednak ridit podle ceny elektriny jak bylo popsano vyse a pak jeste lokalne tak, aby nedoslo k pretizeni tohoto vedeni a transformatoru. Proudove by to melo stacit, berme odhadem 1 auto na 1 byt a skutecnost, ze by uz ted nemelo dojit k pretizeni, kdyz si v nedeli v 11 hodin vsichni zapnou 3 kW elektricky varic.

    Nutno ale rict, z prakticke implementace smart gridu mam spis strach. Je tam mnoho veci, ktere je mozne vyresit spatne a projevit se to muze az za
    nekolik let. V EU bezel testovaci projekt:

    http://grid4eu.blob.core.windows.net/media-prod/29375/grid4eu-final-report_normal-res.pdf

    U nas se to testovalo ve Vrchlabi. V kazde zemi meli jine technicke reseni,
    jedno vsak mely spolecne. Bylo to nasobne slozitejsi nez vyse popsane dobijeci sloupky (protoze resili i jine veci, napriklad spolupraci s fotovoltaickymi elektrarnami, automatickou detekci poruch a jejich izolaci rekonfiguraci site, zlepsovani ucinniku, apod.).

    Jejich `Reference architecture’ na me dela dojem jako popis toho, jak
    by mela referencni architektura vypadat:

    http://ec.europa.eu/energy/sites/ener/files/documents/xpert_group1_reference_architecture.pdf

    Mezi KPI (key-performance-indicators) nemaji vubec nic co by pripominalo IT bezpecnost. Je tam sice napsano par obecnych frazi, ale vubec se nazabyvali
    otazkou jaky vliv na stabilitu cele site bude mit preruresna nebo podvrzena
    komunikace. Nektere implementace dokonce pouzivaly ke komunikace WiMAX nebo
    GPRS (jine vsak komunikovaly primo po silovych vodicich, coz mi prijde robustnejsi).

    Osobne bych byl radsi, kdyby nekdo prosadil not-so-smart-grid, kde by se
    resilo jen dobijeni aut (pripadne provoz topeni a klimatizace) vyse naznacenym jednoduchym zpusobem.

    I tam by se muselo nejak resit jak zajistit aby napriklad hacknute nabijecky (pripadne s backdoorem od vyrobce) nemohly zautocit na sit tim, ze by vsechny v jeden okamzik zacaly odebirat maximalni proud, coz by sit v dobe za mnoho let, kdy bude stabilizovana prave temito nabijeckami uz nemusela ustat.

    Mozna nejaky dalkove ovladany jistic a meric, ktery bude dostatecne jednoduhy, ze mu bude rozvodna spolecnost duverovat (nebo si ho sama vyrobi) a ktery by umoznil nespolupracujici nabijecky odpojovat, pokud by hrozilo pretizeni site….

  24. 24. klusacek  30.11.2017  22:39:43

    [21] To je samozrejme problem. Zatim se vyrobci elektroaut nedokazali dohodnout ani na jednom spolecnem konektoru pro nabijeni. Mozna by to mohlo jeste prosadit nejake konsorcium automobilek a elektrarenskych spolecnosti, ale vyvoj baterek ted take zrychlil, takze si spis myslim ze na to mozna ani nedojde, protoze to nestihnou. Jakmile bude dojezd nad 800 km, a moznost to nabit do 30 minut na dalsich 600 km, tak to vetsina lidi nebude resit.

  25. 25. Kamil2  3.12.2017  15:24:02

    [24] Toť úžasná šance pro buselské byrokraty a erár.
    Po omezení příkonu žárovek, vysavačů, rychlovarných konvic…bude omezen příkon elektromobilů. To je logické, protože co je vysavač či konvice proti žravému elektrovehiklu. Zdanění elektřiny pro elektromobily, elektroměry online propojené s centrem sledování rovozu, spotřeby a dobíjení. V ceně elektrovehiklu poplatek za ekolikvidaci. Vidím nedosírné byrokratické a giskální možnosti. Zákony, vyhlášky, nařízení, regulace, implemantace…

  26. 26. swarm  3.12.2017  15:59:22

    [25] No jistě. Spousta toho asi klidně přijde (pokrok nezastavíš…). Nicméně tohle všechno nakonec ani není závislé na tom, zda auto jezdí na elektřinu, nebo na benzín. Ostatně ani samoříditelná auta nejsou podmíněna elektromotory a o průběžném měření spotřeby se uvažuje už nyní ve spojitosti s novými auty na benzín/naftu.

  27. 27. M  23.12.2017  14:24:32

    hmm, bohužel se ke mně dostal tento článek až teď, nicméně zareaguji, i když už si to asi nikdo nepřečte.

    Kapitola: Máme pro ně dost elektřiny?

    Absolutně jsem nepochopil, proč autor potřebný výkon z elektráren na dobíjení elektromobilů počítá komplikovaně ze spotřeby paliva benzínových a naftových aut, k tomu si přimíchá nisan leaf a to nejhorší na tom, že uvede jen čísla bez výpočtu, což je smutné, pokud na tom pracovalo, dle úvodu článku, několik odborníků. To jen tak na úvod.

    Vzhledem k tomu, že nejsou uvedené přesné výpočty, nemůžu se vyjádřit k tomu, jestli jsou daná čísla správně. Nicméně, pokud chcete uvažovat potřebný výkon elektráren na dobíjení elektromobilů, jediný správný postup je počítat s příkonem nabíječek. Číslo vypočítané ze spotřeby je minimálně pochybné, protože evidentně nebere v potaz právě tu nabíječku, výpočty neznáme a v textu o nich a jejich parametrech není ani zmínka, takže to beru tak, že je autor úplně zanedbal. A ta nabíječka a její příkon, připojená do elektrické sítě, je právě a POUZE to, co tu elektrárnu a rozvodnou síť zajímá. Auto připojený na výstup té nabíječky je nezajímá. Tedy nějaký hausnumero vypočítaný z jeho spotřeby, bych tak řekl, je v tomto případě k ničemu. Porovnávat toto číslo s instalovaným výkonem elektráren je nesmysl.

    No dost keců, dáme si pár výpočtů. V ČR je registrováno aktuálně necelých 5.5 milionů aut. Nisan Leaf se nabíjí nabíječkou s výstupním výkonem buď 3.3 kW nebo 6.6 kW.
    Pokud těch 5.5 milionů aut by byly pouze Nisan Leaf, tak vzhledem k nízké kapacitě té baterie bude muset večer každej dobíjet.

    3.3 kW = 3300 W
    6.6 kW = 6600 W

    Pro zjednodušení budu uvažovat, že všichni budou nabíjet buď pouze 3.3 kW nebo 6.6kW nabíječkou

    5 500 000 * 3300 W = 18 150 000 000 W = 18,15 GW potřebný příkon
    5 500 000 * 6600 W = 36 300 000 000 W = 36.3 GW potřebný příkon

    Podotýkám, že Nisan Leaf má baterie o kapacitě 24 kWh nebo 30 kWh, což znamená, že Teslu za noc stejnou nabíječkou nenabijete, bude potřeba mnohem větší výkon. Bohužel neznám příkon nabíječky Tesly a nechce se mi registrovat na stránkách Tesly, abych to možná zjistil. Tedy případní zájemci si to musí zjistit a spočítat sami.

    To bychom měli nabíjení doma, které je stejně nereálné pro celou populaci, protože obrovské množství lidí bydlí v bytovce a nemají ani garáž s elektrikou, kam by si připojili auto. Pro zájemce navrhuji navštívit Magistrát Prahy nebo Brna a říct jim, že chcete rozkopat celé Brno a Prahu, přeložit inženýrské sítě, aby se mohli položit kabely pro pouliční/sídlištní nabíječky.

    Pak tu máme supernabíječky na dálnice, které autor ve výše zmíněné kapitole vůbec neuvažoval, pouze si povzdechl v závěru článku, že jich moc není.

    Mno supernabíječky jsou ještě lepší prča, než to nabíjení doma.
    Vemu jenom Teslu a jejich 120 kW respektive plánovaná 350 kW verze.
    Kolik myslíte, že jich v ČR bude potřeba? Já nevím, ale dáme si příklad, že jich bude třeba 10 000, druhý příklad 20 000 v ČR:

    120 kW * 10 000 = 1.2 GW
    120 kW * 20 000 = 2.4 GW
    350 kW * 10 000 = 3.5 GW
    350 kW * 20 000 = 7 GW

    Ke všemu výše uvedenému podotýkám, že údaj o instalovaném výkonu elektráren v ČR v článku, tedy 20.5 GW, je správně. Tak a teď máte poněkud reálnější čísla při zanedbání všech ztrát, včetně spotřeby el. energie samotnýma nabíječkama, tepelnýma ztrátama a jejich chlazením.

    Tady máte, milý autore, ty potřebné Temelíny.

    No a pak si vemte mapu světa a koukněte se na Evropu, kolik, kde žije lidí a zamyslete se, kolik toho všeho bude potřeba v Německu, Francii, Polsku, Španělsku, Británii, Itálii. Pak se podívejte dál a začněte přemýšlet, kolik toho bude potřeba v Číně a Indii a co Afrika a její populační boom.

    Navíc začněte přemýšlet, jak vysvětlíte např. Rakousku, Slovinsku, Itálii a Maďarsku, kteří už teď musí el. energii kupovat ze zahraničí, že oni si nepostaví ani jednu supernabíječku a naopak by měli urychleně přemýšlet o pár Temelínech, aby vůbec pokryli svoji současnou spotřebu.

    No a úplně na závěr, milý autore, si udělejte výlet na svoji alma mater a vraťte diplom. Já si totiž všiml, že máte diplom z FEL ČVUT a musím bohužel konstatovat, že všem z FELu děláte neskutečnou ostudu tady tímto článkem.

    Doporučení vrátit diplom Vám píšu jakožto absolvent FEKT VUT. Nesmyslně komplikovaným způsobem jste vypočítal něco, co není a nikdy nebude pravda, celej ten nesmysl zveřejníte, zaštítíte to svým odborným vzděláním a předložíte lidem bez příslušného vzdělání, navíc při absenci výpočtů, jakými jste vypočítal ty čísla, kterýma se oháníte v článku. Tito pak nemají šanci posoudit, že je to nesmysl. Styďte se.

  28. 28. swarm  23.12.2017  20:19:40

    [27] To nemyslíte vážně s tím Vaším výpočtem, že ne…? Je zajímavé, že někdo takový jde a vysvětluje mi něco o vracení diplomu.

    K mezivýpočtům v článku – ty nejzjevnější jsem vynechal, protože by to bylo ještě delší, ale je jich tam stále dost na to, aby se dalo pochopit, co ze vstupních dat vedlo k výsledku. Věřím, že průměrně inteligentnímu člověku s VŠ diplomem to nemůže dělat problémy.

    Pokud jde o rychlonabíječky – přečtěte si komentáře od klusacek.

    Zareaguju na to později, nebo nechám někoho z autorů, aby Vám vysvětlil, proč nemáte pravdu.

  29. 29. klusacek  24.12.2017  0:00:24

    [27] Takze jinymi slovy vlastne rikate, ze az Nissan zacne dodavat nabijecky o vykonu 9.9kW tak bude potreba vykon elektraren 55 GW i kdyz se jinak vubec nic nezmeni. To je preci blbost, ne?

    Vynasobenim maximalniho prikonu nabijecky poctem vsech aut nedostanete potrebnou energii pro jejich provoz, ale jen hypoteticky maximalni prikon.

    Uz ted vam nabijecka reguluje proud tak, aby pripojka neprekrocila rezervovany vykon (http://www.smartev.cz/produkt/smart-ev-box/), takze maximalni prikon nabijecky neni zase tak dulezite cislo.

    Vraceni diplomu ponecham na vasem uvazeni, ale vrele bych doporucil vzit si sbirku slovnich uloh pana Belouna a spocitat si par prikladu pro osvezeni usudku. Mozna vam pak prestane cinit potize chapat vypocet popsany slovne v textu.

  30. 30. swarm  24.12.2017  11:37:21

    [27] Ještě jednou jsem si přečetl Váš příspěvek a přes google analytics jsem se dokonce dostal k původní diskuzi na autoforum*, kde Vás sem někdo odkázal. Ten člověk se vám to tam snažil vysvětlit ze všech stran a Vy jste to stejně nebyl ochoten přijmout. Nicméně už aspoň chápu, co Vám tak vadilo.

    Takže – Vy ve Vašem výpočtu popisujete hromadný jev tak, že pracujete s jedinou nabíječkou (kde skutečně na spotřebě a nájezdu auta vůbec nezáleží), abyste výsledek následně vynásobil počtem nabíječek. To je ale úplně špatně. Je to školácká chyba a dost zásadní. Takto se hromadný jev nikdy nemůže počítat, a to ani kdybychom se bavili jen o stovce aut, resp. stovce nabíječek. O čím více nabíječek jde, tím víc je Váš výpočet úplně mimo realitu. Statistika nic?

    Já Vám tu nebudu doporučovat žádné vracení diplomu. Věřím, že v tom, co děláte, můžete být dobrý. Zde se ovšem mýlíte. Pokud ovšem někam přijdete posilněn vlastním pocitem neomylnosti, abyste rozdával rozumy, kdo má kde vracet diplom, nemůžete se takových chyb dopouštět. Jinak to totiž o Vás něco vypovídá… spíše než o Vašem vzdělání to o Vás vypovídá lidsky.

    *) http://www.autoforum.cz/zajimavosti/nemci-otestovali-skutecny-dojezd-8-elektrickych-aut-je-to-porad-bida/?forum

  31. 31. M  24.12.2017  13:46:01

    swarm: Myslím to naprosto vážně. Srovnáváte hrušky s jablkama. To, co jste spočítal Vy lze použít pro trolejbus nebo trolejauto, který nebudou mít dva mezičlánky tj. baterii a nabíječku. To co je připojeno přímo do sítě. I tak budete muset stejně tu síť nadimenzovat na špičkový odběr, který nastane zpravidla ráno, když se lidi rozjedou do práce a odpoledne, kdy zas pojedou domů tím trolejautem.

    Přijde Vám jako úplně normální, že si ze spotřeby spotřebiče-elektromotor vypočítáte zátěž zdroje- elektrárny, ke kterýmu ten spotřebič není nikdy přímo připojen? Jestli mi tohle chcete tvrdit, trvám na tom, abyste ten diplom vrátil.

    klusacek:

    Požadovaný výkon bude takový, aby byl splněn požadavek zákazníka. To znamená, že pokud Nisan zákazníkovi řekne, že s danou nabíječkou si to auto nabije za čas např. v rozsahu 4h – 16h v závislosti na možnostech el. sítě v jeho bydlišti a zákazník toto akceptuje, pak ok. Myslíte, že tohle lidi budou akceptovat? To jsou ještě v teple doma a můžou třeba jet hromadnou dopravou, no přesuňme se na dálnici. Bude tam rychlonabíječka a v závislosti na možnostech sítě to auto zákazník nabije např. v rozsahu 15 minut – 1 hodina podle aktuálního vytížení sítě. Myslíte, že to lidi akceptují? Mimoto ty supernabíječky budou muset být rozmístěny v takovým množství, aby zvládali odbavovat zákazníky. Když se zablokuje dálnice před nájezdem k rychlonabíječce, protože tam hodiny lidi čekaj, až na ně přijde řada, tak to asi není to, co chceme ne?

    Tím pádem nemůžete uvažovat, že když všichni přejdeme na elektromobily, že se budeme přizpůsobovat el. síti. Ta síť se bude muset přizpůsobit tak, aby nevznikali kvůli ní prodlevy, protože kvůli ní jedou nabíječky na nižší výkon. Na to se vám každej normální člověk vykašle.

    co se týče vrácení diplomu, viz výše, co jsem tu napsal autorovi o trolejbusech, trolejautech. Výkon jako výkon, má to stejnou jednotku, tak je to stejný no ne? NE!

  32. 32. swarm  24.12.2017  14:31:15

    [31] Já také vůbec nepochybuju o tom, že to myslíte vážně. Bohužel se mýlíte a ego vám nedovolí si byť jen připustit, že to tak je. Až ten koncept přijmete, nejspíš se pro vás hodně věcí v životě změní, protože zjistíte že Vaše aktuální představa je vadná i pro všemožné další oblasti a svět by musel vypadat úplně jinak, kdybyste měl pravdu.

    Ohledně dimenzování sítě – jak už vám bylo řečeno dříve jinde: Projděte si štítky všech elektrospotřebičů, co máte v domě, posčítejte si jejich příkon a všechno to vynásobte počtem domácností v ČR.

    Až si to spočítáte a porovnáte výsledek třeba s instalovaným výkonem elektráren v ČR, pochopíte, že nemáte pravdu. Berte to jako cvičení za domácí úkol, bez kterého další diskuze nemá žádný smysl.

    Rychlejší alternativa – vemte si nejčastější jističe v bytech a domech, pronásobte si to pro celou ČR a zase si to srovnejte s instalovaným výkonem elektráren v ČR. Garantuju vám, že budete překvapen, kolikrát to ten instalovaný výkon přesahuje (a to tam ani nemusíte započítat průmysl…). Klidně bych Vám napsal výsledek, ale nechci Vám zkazit radost z výpočtu.

  33. 33. Kamil2  24.12.2017  14:43:13

    [31] Máte pravdu. Všeobecné použití vozidel s benzinovým motorem jest nereálným, protože tolik benzinu pro jejich pohon není k dostání v každé drogerii, jak k tomu dojíti lze výpočtem triviálním. Naproti tomu píce pro koně či uhlí a vody pro parní stroje jest dostatek. Benzin jest látkou vysoce nebezpečnou, pro laickou manipulaci neurčenou. Uhlí však jest zcela bezpečným a taktéž i kotly nejmodernější konstrukce spolehlivými parními záklopkami vybavené. Mimo to, jízda vozidlem a pohonem založeným na kombinaci benzínu s jeho vybuchujícími parami v kombinaci s elektřinou jest jako s hořící svící seděti na otevřeném sudu střelného prachu. Proto všichni, kteří pro pohon benzinovými parami horují, by za nebezpečné blázny měli býti považováni a jsou li držiteli diplomů technického vzdělání osvědčujících, měli by jich býti zbaveni.

  34. 34. Kamil2  24.12.2017  14:48:47

    [31] Taktéž praud střídawj zapovězen být by měl, neb daleko škodliwějšj než praud stejnosměrnj, a v Americe k poprawowanj zločincův používán jest.

  35. 35. swarm  24.12.2017  20:33:19

    Konec dikuze odmazán, protože už se to jen opakovalo do zblbnutí a zbytečně to znepřehledilo zbytek. S M jsme se stejně shodli na tom, že k názorové shodě nedojde.

    Btw pokud by někdo ještě argumentoval tím, že 5,5 miliónu aut vyjede ve stejnou dobu a večer se začne nabíjet ve stejnou dobu, dle ČSÚ je počet řidičů dojíždějících autem (mimo vlastní obec/město) do zaměstnání/školy asi půl miliónu (tj. desetina).

  36. 36. klusacek  25.12.2017  15:59:43

    [33] Dekuji za nejlepsi prispevek diskuse! Uprimne jsem se zasmal.

  37. 37. Kamil2  27.12.2017  10:44:25

    [35] Tak. Stejně jako 5,5 milionu aut najednou nečerpá u pumpy.
    Za předpokladu, že víme, jaká je jejich denní energetická spotřeba, můžeme zhruba vypočítat množství elektrické energie, kterou je nutno vyrobit a rozvést, včetně ztrát při rozvodu a nabíjení. Mně se to jeví tak, že elektrická síť bude doplňována tak jak se elektromobilita bude rozvíjet. Není to tak, že elektromobily jsou nesmysl, protože pro ně není zdroj elektřiny ani síť, ani tak, že je nutno napřed vyvudovat zdroje a síť. Infrastruktura pro elektromobily se bude vyvíjet jako se vyvíjela a vyvíjí pro vše ostatní. Společně. Ne na základě nynějšího stavu technologií, ale tak jak se budou vyvíjet. Lepší akumulátory, rychlejší nabíjení, lepší stacionární akumulátory pro nabíjení, využívající lokární zdroje, fotovoltaiku, větrné alektrárny, kogeneraci. Rozvoj „chytrých“ sítí, řízené nabíjení pro vyrovnání spotřeby s výrobou. Různá řešení pro venkov, malá města, velká města, podle hustoty osídlení. Největší problémy a náklady jsou ve velkých městech. Stávající síť není dostatečně dimenzovaná. Předpokládám požadavek posílené sítě u projektů nové bytové vystavby. Bude opuštěn model „jednou za týden naberu plnou“. Dobíjet se bude při každé příležitosti, při každém parkování. Předpokládám, že rozvoj elektromobility ovlivní i životní styl. Ve velkých aglomeracích dojde k zásadnímu zlepšení čistoty vzduchu. Lepší a levnější akumulátory umožní rozvoj fotovoltaiky. Nové technologie, levnější masová výroba. Elektřinu může vyrábět každá střecha. Je to komplexní záležitost neomezená jen na elektromobilitu.

    Vrátím se do relativně vzdálené minulosti, doma měli debatu jestli PC 486 SX či DX, a vůbec jaké. Strejda pravil „No a kčemu Ti to bude, kde budeš brát všechna ta data?“ Internet nebyl, všeobecně dostupná digitální fotografie nebyla, všechno bylo velmi drahé. Diskety, cédéčka a jiná záznamová média. Často na tu debatu vzpomínám.
    A dnes?

    Tak je to a bude s lecčím. Co bylo dřív, slepice nebo vejce? Infrastruktura nebo elektromobily? Ani jedno. Oboje se vyvíjelo současně.

  38. 38. Kamil2  27.12.2017  10:58:06

    Poznámka ke vzhledu aut. Nynější móda agresívních ksichtů, tlam a předimenzovaných vstupů chladičů, a stylů ala „Star Wars“ se mi nelíbí.
    Tak jako obdoba tohohle a tuzing u IT. To je na jinou diskusi.

  39. 39. Jiří  6.2.2018  12:17:21

    Velmi hezký a střízlivý článek. Neuvažoval jste, že byste jej navrhnul na některé „mainstreamové“ weby k publikování? Některé jsou nekriticky optimistické vůči elektroautům, některé přesně naopak
    Tipy na 3 z nich:

    hybrid.cz .. těm se to určitě bude líbit

    autoforum.cz … asi se nebude líbit, že jim nabouráte jejich vidění benzínovo/dieselového světa jako svatého grálu

    auto.idnes.cz .. stejně jako autoforum.cz, nemají elektroauta moc v oblibě

    http://notebookblog.cz/ostatni/auta/nastup-elektroaut-je-vubec-realny-pozor-dlouhy-clanek/