Kategória: elektroauto

Test vozidla ADAC Hyundai IONIQ Hybrid Premium

Päťdverový hatchback strednej triedy (104 kW / 141 k)

Ioniq je odvodený z iónu (elektricky nabitý atóm) a jedinečného (jedinečného). V súčasnosti je jedinečné, že model je ponúkaný výlučne s tromi alternatívnymi pohonmi. Hyundai je k dispozícii s čisto elektrickým pohonom, ako plug-in hybrid (od roku 2017) a testovaný v teste vozidla ako “normálny” hybridný variant. Tu je pohonná jednotka, ktorá má výkon systému 141 koní, priame vstrekovanie benzínu s objemom 1,6 litra a elektromotor. Prenos výkonu je zabezpečený šesťstupňovou prevodovkou s dvojitou spojkou. Elektromotor väčšinou pomáha pri štartovaní a zrýchľovaní. Pri nízkej záťaži a primerane nabitom hybridnom akumulátore môžu byť krátke vzdialenosti, ale aj až 120 km pokryté čisto elektricky. Ako však Ioniq ovplyvňuje EcoTest? Zatiaľ čo testovacia spotreba 5,1 l / 100 km môže byť chválená, Hyundai pohlcuje znečisťujúce látky. Produkcia oxidu uhoľnatého a počet častíc prudko stúpa v náročnej časti diaľnice, ktorá stojí korejské cenné body. Presvedčte sa o kompaktnom vozidle v prvotriednej verzii v sériovom i bezpečnostnom vybavení. Okrem vybavenia ako svetelný / dažďový senzor, automatická klimatizácia, vyhrievané sedadlá a ventilácia vpredu a infotainment systém vrátane navigácie, sú okrem iného núdzové, vedenie jazdného pruhu a asistenti slepého uhla. Ioniq Premium nie je veľmi lacný s 30.270 eurami, ale dostanete sa na veľmi dobre vybavené a vhodné pre každodenné použitie hybridného vozidla. Hyundai zneškodňuje znečisťujúce látky. Produkcia oxidu uhoľnatého a počet častíc prudko stúpa v náročnej časti diaľnice, ktorá stojí korejské cenné body. Presvedčte sa o kompaktnom vozidle v prvotriednej verzii v sériovom i bezpečnostnom vybavení. Okrem vybavenia ako svetelný / dažďový senzor, automatická klimatizácia, vyhrievané sedadlá a ventilácia vpredu a infotainment systém vrátane navigácie, sú okrem iného núdzové, vedenie jazdného pruhu a asistenti slepého uhla. Ioniq Premium nie je veľmi lacný s 30.270 eurami, ale dostanete sa na veľmi dobre vybavené a vhodné pre každodenné použitie hybridného vozidla. Hyundai zneškodňuje znečisťujúce látky. Produkcia oxidu uhoľnatého a počet častíc prudko stúpa v náročnej časti diaľnice, ktorá stojí korejské cenné body. Presvedčte sa o kompaktnom vozidle v prvotriednej verzii v sériovom i bezpečnostnom vybavení. Okrem vybavenia ako svetelný / dažďový senzor, automatická klimatizácia, vyhrievané sedadlá a ventilácia vpredu a infotainment systém vrátane navigácie, sú okrem iného núdzové, vedenie jazdného pruhu a asistenti slepého uhla. Ioniq Premium nie je veľmi lacný s 30.270 eurami, ale dostanete sa na veľmi dobre vybavené a vhodné pre každodenné použitie hybridného vozidla. Presvedčte sa o kompaktnom vozidle v prvotriednej verzii v sériovom i bezpečnostnom vybavení. Okrem vybavenia ako svetelný / dažďový senzor, automatická klimatizácia, vyhrievané sedadlá a ventilácia vpredu a infotainment systém vrátane navigácie, sú okrem iného núdzové, vedenie jazdného pruhu a asistenti slepého uhla. Ioniq Premium nie je veľmi lacný s 30.270 eurami, ale dostanete sa na veľmi dobre vybavené a vhodné pre každodenné použitie hybridného vozidla. Presvedčte sa o kompaktnom vozidle v prvotriednej verzii v sériovom i bezpečnostnom vybavení. Okrem vybavenia ako svetelný / dažďový senzor, automatická klimatizácia, vyhrievané sedadlá a ventilácia vpredu a infotainment systém vrátane navigácie, sú okrem iného núdzové, vedenie jazdného pruhu a asistenti slepého uhla. Ioniq Premium nie je veľmi lacný s 30.270 eurami, ale dostanete sa na veľmi dobre vybavené a vhodné pre každodenné použitie hybridného vozidla.

Štýly karosérie: Hatchback

Zdroj: Test vozidla ADAC Hyundai IONIQ Hybrid Premium

Strata kapacity batérie

Strata kapacity batérie

: Nissan Leaf
__TOC__

zdroj clanku : http://www.electricvehiclewiki.com/wiki/battery-capacity-loss/príznaky

Keď batéria stráca kapacitu, začnú sa merať čiarky z “ukazovateľa kapacity” (tenká 12-segmentová mierka vpravo vpravo od 12-segmentového stavu ukazovateľa nábojov). Prvý známy model Nissan LEAF, ktorý má nahradiť batériu, bol uvedený v novembri 2011, keď majiteľ v oblasti Phoenix oznámil chýbajúcu kapacitu batérie na palubnej doske a zníženú vzdialenosť. V apríli 2012 ohlásil rovnaký problém ďalšie vodič LEAF z oblasti Phoenix . Všetky LEAF hlásené zníženie kapacity batérie boli v teplejších klimatických podmienkach (hlavne Arizona, Texas a Kalifornia). Všimnite si, že v príručke Nissan Leaf Service Manual predstavuje strata prvej kapacity 15% straty, zatiaľ čo každá nasledujúca lišta predstavuje iba 6,25% straty .
LEAF vykazujúci 3 bary straty kapacity batérie s čítaním GID :

Faktory ovplyvňujúce stratu kapacity batérie

Každá chémia lítium-iónovej batérie má jedinečné vlastnosti, ktoré ovplyvňujú rýchlosť úbytku kapacity. Podľa Charlesa Whalena :
“Máte pravdu, že príslušné batérie typu Volt a Leaf majú skoro identickú chémiu, a to obidve pomocou lítium-mangánovej katódy. Obaja majú rovnakú citlivosť na vysoké tempy. Zo všetkých lítiových katódových chemikálií je lítium-mangán najviac citlivý na teplo a má pri najvyšších teplotách najvyššiu a najvyššiu rýchlosť rozpadu a degradácie kapacity. ”

  • Lekárska batéria je vyrobená spoločnosťou NEC, je bunka typu sáčky s vrstvenými prvkami, katóda LiMn2O4 firmy Nippon Denko, grafitová anóda od spoločnosti Hitachi Chemicals, celgardový PP suchý separátor a elektrolyt EC typ LiPF6 od spoločnosti Tomiyama.
  • Akumulátorová batéria Volta vyrába spoločnosť LG Chem, je bunka typu sáčky s vrstvenými prvkami, katóda LiMn2O4 od spoločnosti Nikki Catalysis, tvrdá anódová uhlíka (ktorá je robustnejšia a má lepšie / dlhšie životné vlastnosti ako grafitová anóda v Leaf’s batériový článok) od firmy Kureha, oddeľovač Celgard PP suchý / SRS a elektrolyt typu PC LiPF6 vyrobený v podniku spoločnosťou LG Chem.

Existujú dva zdroje straty kapacity batérie, straty kalendára a straty na bicykli. Strata kapacity kalendára je strata z prechodu času, kým je batéria ponechaná v súprave SOC, zvyčajne 60% v laboratórnych testoch. Strata cyklu je dôsledkom nabíjania a vybitia batérie. Závisí to od maximálneho stavu nabitia (SOC) a hĺbky vybíjania (DOD), čo je percentuálny podiel celkového rozsahu kapacity, ktorý sa používa počas cyklu.
Technicky je životnosť kalendára lítiovej batérie funkciou 4 premenných :

  • Priemerná teplota
  • Štandardná odchýlka teploty
  • Priemerný stav nabitia (SOC)
  • Štandardná odchýlka SOC

f (T), σ (T), μ (SOC), σ (ΔSOC), ktorá sa negatívne (nepriamo) líši so všetkými 4 premennými.
Tu je typická krivka straty kapacity kariet batérií pre lítiové mangánové batérie vynášajúc roky do konca životnosti (zvyčajne 70% zostávajúca kapacita) v porovnaní s teplotou:

Výsledky uvedené v životnom grafe kalendára sú pre rovnovážny stav, konštantnú teplotu T kde σ (T) = 0) a ustáleného stavu, konštantný SOC rovný 60% SOC (teda kde σ (ΔSOC) = 0). Ak je priemerná hodnota SOC v priebehu času vyššia ako 60% SOC, životnosť kalendára bude nižšia ako životnosť uvedená v grafe. Vzhľadom na zvýšenú variabilitu obidvoch teplôt σ (T) a SOC cyklického pásma σ (ΔSOC) sa životnosť kalendára zníži. Pri 60% SOC majú lítium-mangánové batérie trochu viac ako 8 rokov života pri 21 ° C (70 ° F), ale iba 5 rokov pri 32 ° C (90 ° F), Pri vyšších úrovniach nabíjania je citlivosť na teplo a miera degradácie ešte väčšia.
Charles Whalen ďalej hovorí: ” Teplota má oveľa väčší vplyv na životnosť batérie ako na SOC . Stav poplatkov (SOC) má účinok, ale v opačnom smere, čo si možno myslíte. Pri lítiových batériách – a * iba * pre lítiové batérie (to neplatí pre NiMH a olovnatú kyselinu) – nižšia priemerná hodnota SOC (až do 30% SOC) v priebehu času bude mať za následok dlhšiu životnosť batérie a vyššia priemerná hodnota SOC v priebehu času bude mať za následok kratšiu životnosť batérie. Chimia LiMn2O4, ktorú používajú GM a Nissan v prvej generácii elektródy Volt a Leaf, je veľmi citlivá na teplo a má vysokú mieru degradácie, keď dosiahnete nad 95 stupňov F. ”
V záujme predĺženia životnosti batérie spoločnosť GM využíva iba 65% kapacity batérie Volt , pričom nastavuje limity na úrovni 22% SOC na nízkej úrovni a 87% SOC na vysokej úrovni .
LiMn2O4 má dve veľké problémy pri zvýšených teplotách : kapacita sa stráca pri cyklickom nabití náboja a rozpúšťanie Mn do elektrolytu. Zadržanie kapacity je
takmer konštantné pod 50% SOC, ale s SOC sa znižuje v rozmedzí od 50% do 80%. Batérie by sa mali skladovať pri optimálnom skladovacom stave, ktorý je medzi 30% a 40% . Iný odkaz sa zhoduje s týmto rozsahom ako s optimálnym SOC pre skladovanie.
Surfingslovak informoval o tom, ako hĺbka výboja (DOD) ovplyvňuje rýchlosť straty kapacity batérie: “Najbližšia vec, ktorú som našiel, bola správa JPL pre misiu Mars Rover . Zistili, že kapacita sa znižuje z bicyklovania o približne šesťkrát vyšší pri 60% DOD v porovnaní s 30% DOD. Použili SAFT LiNiO2 bunky s grafitovou anódou a valcovým hardvérom z nehrdzavejúcej ocele. Bunky boli testované v režime 30% DOD (5000 cyklov) s priemernou rýchlosťou straty energie pri 4,0 V pri 0,000704% za cyklus a 60% DOD režime (500 cyklov) s priemernou rýchlosťou straty energie pri 4,0 V pri 0,00430% za cyklus.
Iná správa , ktorá nešpecifikuje špecifickú chémiu batérie, ukazuje graf zvyšujúcej kapacity batérie v porovnaní s počtom cyklov. Výsledky (s cyklami normalizovanými do plného cyklu v zátvorkách):

  • 100% až 0% – 1200 cyklov (1200 cyklov)
  • 100% až 80% – 12000 cyklov (2400 cyklov)
  • 80% až 0% – 5000 cyklov (4000 cyklov)

Hodnota DOD 80% spôsobila, že batéria vydrží 3,3 krát dlhšie ako DOD 100% (ale pamätajte na to, že Leaf obmedzuje používanie batérie do istej miery, čo umožňuje hranice SOC 95% na vysokom konci a 2% na nízkej úrovni ) ,

tbleakne našiel publikovaný papier, ktorý skúmal straty lítium-iónovej batérie v závislosti na teplote a SOC:
” Korelácia Arrheniusovho správania sa v moci a kapacite sa stráca s impedanciou buniek a vytváraním tepla v cylindrických lítium-iónových bunkách ” od Sandia National Laboratories.
Tento dokument z roku 2003 samozrejme nehovorí o konkrétnej lítiovej chémii LEAF (
LixNi0.8Co0.15Al0.05O2 katóda sa používa pri testovaní), ale verím, že správanie, ktoré popisuje, je typické. Kapacita vyblednutia je popísaná na str. 7, obr. 5, ktorý je zobrazený nižšie:

Z grafu je zrejmé, že pokles kapacity sa spomaľuje pri všetkých teplotách, keď sa SOC znižuje zo 100% na 80% na 60% SOC. Pri vysokom nabití sú ióny Li koncentrované na grafitovej elektróde. Podľa môjho názoru sa na tejto elektróde uskutočňuje proces primárnej straty, takže sa zdá byť rozumné, že tento proces by sa spomalil, keď sa znížila hodnota SOC.
Otázkou, ktorá sa často pýta, je, či nabíjanie L2 (240 voltov, 16 ampér všeobecne) škodí batérii. Ak chcete položiť otázku v perspektíve, musíte vedieť, že rýchlosť nabíjania sa meria pomocou rýchlosti C, kde 1 C je prúd potrebný na nabíjanie batérie za jednu hodinu. Keďže list s nabíjaním 3,3 kw zaberie plné nabitie približne za 7 hodín, nabíjacia rýchlosť je C / 7 (1/7 C). Existuje jedna štúdia, ktorá merala množstvo straty kapacity ako funkciu sadzby poplatkov. Ukázalo sa, že C / 2 (asi 12 kw pre Leaf) bolo miesto sladké a že pomalšie alebo rýchlejšie nabíjacie rýchlosti mali vyššie miery straty kapacity:

Záver: L2 nabíjanie na 3,3 kw (alebo 6,0 kw v niektorých 2013 Leafs) je neočakáva sa, že bude mať škodlivý vplyv na rýchlosť straty kapacity batérie.

Model starnutia batérie

Niektorí majitelia naznačujú, že degradácia batérie je závislá na Arrhenius Právo vzorca dvojitého degradácie kapacity batérie na 10 stupňov Celzia zvýšenie teploty. Použitie údajov z grafov na Weatherspark, (vyťažený Stoaty pomocou počítania pixelov vo Photoshope), Surfingslovak odhadol relatívnu mieru straty kapacity pre rôzne mestá v Spojených štátoch na základe Arrheniusovho zákona a teploty okolia. Predpokladá sa, že teplota je stredom každého z ôsmich teplotných pásiem. Sadzby degradácie boli odhadnuté vzhľadom na Los Angeles Civic Center, ktoré boli vybrané, pretože Nissan založil svoje testovanie na 12500 kilometroch ročne v tomto meste. Na základe tohto výpočtu by sa očakávalo, že Leafs vo Phoenixu stratí kapacitu batérií 2,64 krát rýchlejšie ako Leafs v Seattli, pričom všetky ostatné faktory budú rovnaké. Weatherman potvrdil výpočty pre niektoré mestá s hodinovými údajmi (druhý stĺpec tabuľky nižšie). Zatiaľ čo faktory starnutia dávajú dobrú predstavu o objednávkemestských miest môžu skutočné hodnoty mať rozšírenú alebo zmenenú stupnicu v závislosti od hodnoty aktivačnej energie (pozri nižšie uvedený opis), takže hodnoty sú bližšie k sebe alebo od seba vzdialenejšie.
Poznámka: Spoločnosť NEC (partner Nissan v spoločnom podniku AESC, ktorý vyrába batériové súpravy pre LEAF) použil Arrhenius Law pri testovaní novej prísady elektrolytu, ktorá zdvojnásobila životnosť batérie . Zaujímavosťou je, že našli faktor 3,2 v životnosti batérie medzi najhorúcejšími a najchladnejšími mestami, ktoré sa používajú pri simulácii, v blízkosti faktora 2,64 odhadovaného medzi spoločnosťami Phoenix a Seattle. Použitím modelu 66% času cyklu a 33% času skladovania vypočítali zdvojnásobenie straty kapacity pri každom zvýšení teploty o 6,85 ° C pre novo vyvinutú batériu.
Surfingslovak tiež vyvinul hrubý model na odhadnutie toho, koľko úbytku kapacity môžete očakávať, že bude vidieť pre vaše konkrétne geografické umiestnenie a plánované ročné kilometre. Spoločnosť Stoaty zdokonalila model tabuľkového procesora tak, aby zodpovedala údajom spoločnosti Nissan získaným spoločnosťou TickTock v jeho diskusii o testovaní Casa Grande s inžinierom spoločnosti Nissan .
Starnutie batérie Predpoklady modelu:

  • Úbytok kapacity kalendára a strata kapacity cyklu závisia od teploty
  • Strata kapacity kalendára je úmerná druhému odmocneniu času (napr. 2 roky by znamenalo 1,41-násobok degradácie zaznamenanej za jeden rok, čo znamená, že druhý rok by mal 41% straty kalendára v prvom roku)
  • Strata solárneho zaťaženia (tj parkovanie auta na slnku) bola odhadnutá na základe štúdie batérie Prius () a zmenšená pomocou priemerného ročného slnečného žiarenia z NREL:


Pôvodná verzia modelu starnutia batérie bola empiricky naladená, aby reprodukovala čo najdlhší graf TickTockovho údajov Nissanu. Aby sa prispôsobil graf, bolo zistené, že tieto dodatočné predpoklady sú potrebné:

  • Úbytok kalendára za prvý rok bol pre mesto s “normálnou” teplotou 6,5%
  • Strata na bicykli pre “normálne” mesto bola 1,5% za každých 10 000 míľ, ktoré boli vyťažené rýchlosťou 4 míle na kilometer
  • Riadenie vozidla efektívnejšie ako 4 míle na kwh by spôsobilo menšie zaobchádzanie s akumulátorom a znížilo stratu cyklu v pomere k zvýšeniu účinnosti. Naopak, menej efektívna jazda by zvýšila stratu bicyklov
  • Faktor starnutia spoločnosti Phoenix Arrhenius mierne nadhodnocuje horúce klimatické starnutie; bolo potrebné prispôsobiť faktory starnutia, aby vyhovovali údajom spoločnosti Nissan. Upozornenie: Nastavenie vyžadovalo, aby boli faktory vysokého starnutia ako Phoenix zmenšené (približne 1,8 -> 1,5 pre Phoenix na stupnici, ktorú sme používali), hoci model má hodnoty upravené na mierne odlišnú základnú hodnotu 0,9 pre “normálne” takže skutočná zmenená hodnota pre spoločnosť Phoenix je 1,35

Graf a predpovede modelu starnutia batérie sú uvedené nižšie:

Model bol nedávno (október 2013) aktualizovaný a kalibrovaný pomocou merania kapacity Ah z Leaf Spy alebo LeafDD. Použitím údajov vykázaných z 22 listov (len modelové roky 2011-2012, pretože batériový elektrolyt bol “vylepšený” pre letáky v roku 2013), bolo vykonaných niekoľko zmien na kalibráciu modelu tak, aby zodpovedal aktuálnym údajom:

  • Bolo zistené, že zmenšovanie faktorov starnutia pre mestá s teplým prostredím ako Los Angeles spôsobilo predpoveď podhodnotiť skutočnú stratu. Preto sa v týchto teplejších klimatických podmienkach používali nestrachové faktory starnutia
  • Strata kalendára bola zmenená na 6,9% v prvom roku pre mesto s “normálnou” teplotou (empiricky odvodené, aby najlepšie zodpovedalo aktuálnym údajom o strate kapacity)
  • Strata na bicykli pre “normálne” mesto sa zmenila na 2,0% za každých 10 000 míľ, ktoré boli vyvezené na 4 míle na kilometer (empiricky odvodené, aby najlepšie zodpovedali aktuálnym údajom o strate kapacity)
  • Bol pridaný korekčný faktor, ktorý zohľadnil fakt, že ak by sa kapacita batérie znížila, mali by byť potrebné plné cykly na riadenie danej vzdialenosti (všetky ostatné parametre sú rovnaké)

Pri týchto zlepšeniach modelu skutočná strata ako percento predpokladanej straty dosahuje priemernú hodnotu 100,04% so štandardnou odchýlkou 10,13%. Všimnite si, že predpovedaná miera straty kapacity sa značne zvýšila s revidovaným modelom v súlade s tým, čo bolo pozorované. Predpokladá sa, že táto verzia je oveľa presnejšia, ale samozrejme stále nie je známe, či budúce predpovede budú sledovať tak tesne ako kalibrované aktuálne predpovede.
Model starnutia batérie (verzia 1.00) je tabuľka, ktorá je k dispozícii v:

Model starnutia batérie sa ďalej diskutuje na fóre .
Predpovede z modelu starnutia batérie pre rôzne mestá sú uvedené nižšie. Pre individualizované predpovede si stiahnite tabuľku Model starnutia batérie vyššie.
Poznámka: Tieto údaje počítajú s výkonom 12500 míľ za rok pri efektívnosti 4,6 míľ za hodinu a nezahŕňajú straty zaťaženia slnečným žiarením. Model tiež nezodpovedá za to, že Leaf opúšťa 100% poplatok za značné časové obdobie (zlé na batériu), časté rýchle nabíjanie (zlé pre batériu), priemerný SOC Leaf je udržiavaný na (nižšia je lepšia, nižšia do približne 30%), priemerná hĺbka výboja (je horšia, je lepšia) alebo skutočnosť, že DOD sa zvýši, keď batéria stárne, aby pokryla rovnakú vzdialenosť na nabitie.
Odmietnutie zodpovednosti: Vezmite tieto predpovede veľkým množstvom soli. Sú to jednoducho naše najnovšie najlepšie predpoklady a dúfajme, že poskytnú viac špecifických informácií ako neurčité vyhlásenia o kapacite spoločnosti Nissan. Predpovede pre SOC menej ako 70% alebo dlhšie ako 5 rokov sú menej pravdepodobné, že budú zmysluplné. Vaša skutočná strata môže byť lepšia alebo výrazne horšia, než sa predpokladalo.

veľkomesto Faktor starnutia (nerozložený) Faktory starnutia meteorológov Solárne zaťaženie kWh / m2 Zvyšná kapacita 1 rok Zvyšná kapacita 2 roky Zvyšná kapacita 3 roky Zvyšná kapacita 5 rokov Zvyšná kapacita 10 rokov Koniec života (zostávajúcich 70%)
Dubaj, SAE 2.17 79,9% 69,3% 58,9% 35,6% <5,0% 1,9 roka
San Juan, Portoriko 1,87 7.1 82,6% 73,6% 65,0% 46,9% <5,0% 2,4 rokov
Phoenix, AZ 1.81 1.81 9 83,1% 74,5% 66,2% 49,0% <5,0% 2,5 rokov
Mesa, AZ 1.78 9 83,4% 74,9% 66,8% 50,1% <5,0% 2,5 rokov
Palm Springs, CA 1,77 9 83,4% 75,0% 67,0% 50,3% <5,0% 2,6 rokov
Fort Lauderdale, FL 1.68 1.59 6.5 84,3% 76,3% 68,8% 53,4% <5,0% 2,8 roka
Hong Kong Intl Airport 1.67 1.59 84,3% 76,4% 69,0% 53,7% <5,0% 2,8 roka
Honolulu, HI 1.67 1.59 7.7 84,3% 76,4% 69,0% 53,7% <5,0% 2,8 roka
Las Vegas, NV 1.50 9 85,8% 78,8% 72,3% 59,2% 13,0% 3,3 roka
Orlando, FL 1.47 1.39 6.5 86,1% 79,2% 72,8% 60,0% 16,4% 3,4 rokov
Houston, TX 1.47 1.35 6.5 86,2% 79,3% 73,0% 60,2% 17,3% 3,4 rokov
Tucson, AZ 1.45 9 86,3% 79,6% 73,3% 60,8% 19,2% 3,5 roka
New Orleans, LA 1.42 6.5 86,6% 80,0% 73,9% 61,7% 22,5% 3,6 roka
Hilo, HI 1.42 1.34 6 86,6% 80,0% 73,9% 61,7% 22,5% 3,6 roka
Ridgecrest, CA 1.37 9 87,0% 80,7% 74,8% 63,3% 27,4% 3,8 roka
San Antonio, TX 1.37 6.5 87,0% 80,7% 74,8% 63,3% 27,4% 3,8 roka
Jacksonville, FL 1.36 6.5 87,1% 80,8% 75,0% 63,5% 28,1% 3,8 roka
Austin, TX 1.35 6.5 87,2% 81,0% 75,3% 63,9% 29,4% 3,9 rokov
Dallas, TX 1.32 1.32 7 87,4% 81,4% 75,8% 64,8% 31,7% 4,0 roka
Witchita Falls TX 1.32 1.32 7.5 87,4% 81,4% 75,8% 64,8% 31,7% 4,0 roka
Waxahachie, TX 1,25 7 88,1% 82,4% 77,1% 66,9% 37,3% 4,3 roka
Tyler, TX 1,25 6.5 88,1% 82,4% 77,1% 66,9% 37,3% 4,3 roka
Bakersfield, CA 1.23 7.5 88,3% 82,7% 77,5% 67,5% 39,0% 4,4 roka
Sevilla, Španielsko 1.18 88,6% 83,3% 78,4% 68,8% 42,2% 4,7 roka
Jackson, MS 1.18 6.5 88,6% 83,3% 78,4% 68,8% 42,2% 4,7 roka
Fresno, CA 1.17 7.5 88,8% 83,5% 78,6% 69,2% 43,0% 4,8 roka
Memphis, TN 1.16 6.5 88,9% 83,7% 78,9% 69,6% 44,1% 4,9 rokov
Palmdale, CA 1.12 7.5 89,2% 84,2% 79,5% 70,6% 46,5% 5,1 roka
Little Rock, AR 1.12 6.5 89,2% 84,2% 79,5% 70,6% 46,5% 5,1 roka
Ontario Intl Airport 1.10 7.5 89,4% 84,4% 79,9% 71,2% 47,7% 5,2 rokov
Van Nuys, CA 1.10 1.08 7.5 89,4% 84,4% 79,9% 71,2% 47,7% 5,2 rokov
Riverside, CA 1.09 9 89,5% 84,6% 80,1% 71,5% 48,3% 5,3 roka
Visalia, CA 1.09 7.5 89,5% 84,6% 80,1% 71,5% 48,3% 5,3 roka
Modesto, CA 1.08 7.5 89,6% 84,8% 80,4% 71,9% 49,3% 5,4 roka
Tulsa, OK 1.08 6.5 89,6% 84,8% 80,4% 71,9% 49,3% 5,4 roka
Burbank, CA 1.07 7.5 89,7% 84,9% 80,5% 72,2% 49,9% 5,4 roka
Atlanta, GA 1.07 6.5 89,7% 84,9% 80,5% 72,2% 49,9% 5,4 roka
Oklahoma City, OK 1.07 7.5 89,7% 84,9% 80,5% 72,2% 49,9% 5,4 roka
Anaheim, CA 1.06 7.5 89,7% 85,0% 80,7% 72,4% 50,3% 5,5 roka
Sydney, Austrália 1.03 90,0% 85,4% 81,2% 73,2% 52,1% 5,7 rokov
Charlotte, NC 1.02 6.5 90,1% 85,6% 81,4% 73,5% 52,6% 5,8 rokov
Nashville, TN 1.02 1.02 6.5 90,1% 85,6% 81,4% 73,5% 52,6% 5,8 rokov
Norfolk, VA 1.01 6.5 90,2% 85,7% 81,6% 73,9% 53,5% 5,9 rokov
Raleigh, NC 1.00 1.04 6.5 90,3% 85,8% 81,8% 74,1% 54,1% 6,0 rokov
Občianske centrum v Los Angeles 1.00 1.00 7.5 90,3% 85,8% 81,8% 74,1% 54,1% 6,0 rokov
Ota, Japonsko 0.98 90,4% 86,0% 82,0% 74,4% 54,7% 6,1 rokov
Santa Ana, CA 0,97 7.5 90,4% 86,1% 82,1% 74,6% 55,1% 6,2 rokov
San Diego, CA 0,97 7.5 90,4% 86,1% 82,1% 74,6% 55,1% 6,2 rokov
Kansas City, MO 0,97 6.5 90,4% 86,1% 82,1% 74,6% 55,1% 6,2 rokov
Knoxville, TN 0,97 6.5 90,4% 86,1% 82,1% 74,6% 55,1% 6,2 rokov
Sacramento, CA 0.96 7.5 90,5% 86,2% 82,2% 74,8% 55,5% 6,2 rokov
Lisabon, Portugalsko 0.95 90,6% 86,3% 82,4% 75,0% 56,0% 6,3 rokov
Albuquerque, NM 0,94 9 90,6% 86,4% 82,6% 85,3% 56,6% 6,4 rokov
Santa Monica, CA. 0.93 7.5 90,7% 86,4% 82,6% 75,3% 56,6% 6,4 rokov
Los Angeles Intl Airport 0,92 0,89 7.5 90,7% 86,5% 82,7% 75,5% 57,1% 6,5 rokov
Madrid, Španielsko 0,92 90,7% 86,5% 82,7% 75,5% 57,1% 6,5 rokov
Santa Clara, CA 0,90 7.5 90,8% 86,7% 83,0% 75,9% 57,9% 6,6 roka
San Jose, CA 0,90 7.5 90,8% 86,7% 83,0% 75,9% 57,9% 6,6 roka
Prescott, AZ 0,88 9 90,9% 86,9% 83,2% 76,2% 58,5% 6,7 rokov
Winchester, VA 0,88 6.5 90,9% 86,9% 83,2% 76,2% 58,5% 6,7 rokov
Philadelphia, PA 0,88 5.5 90,9% 86,9% 83,2% 76,2% 58,5% 6,7 rokov
Oceanside, CA 0.85 7.5 91,1% 87,1% 83,5% 76,7% 59,5% 6,9 rokov
Salt Lake City, UT 0.85 7.5 91,1% 87,1% 83,5% 76,7% 59,5% 6,9 rokov
Indianapolis, IN 0,83 5.5 91,2% 87,4% 83,8% 77,2% 60,5% 7,1 rokov
Omaha, NE 0,81 6.5 91,3% 87,5% 84,0% 77,5% 61,0% 7,2 rokov
Columbus, OH 0,81 5.5 91,3% 87,5% 84,0% 77,5% 61,0% 7,2 rokov
Porto, Portugalsko 0,81 0,81 91,3% 87,5% 84,0% 77,5% 61,0% 7,2 rokov
Melbourne, Austrália 0,80 91,4% 87,6% 84,1% 77,6% 61,3% 7,3 rokov
Montclair, NJ 0,80 5.5 91,4% 87,6% 84,1% 77,6% 61,3% 7,3 rokov
Reno, NV 0,80 9 91,4% 87,6% 84,1% 77,6% 61,3% 7,3 rokov
Chicago, IL 0,78 0.75 5.5 91,5% 87,7% 84,4% 78,0% 62,0% 7,5 rokov
Pittsburgh, PA 0,77 5.5 91,6% 87,8% 84,5% 78,2% 62,4% 7,6 rokov
Detroit, MI 0,76 5.5 91,6% 87,9% 84,6% 78,3% 62,7% 7,6 rokov
San Francisco, CA 0,76 7.5 91,6% 87,9% 84,6% 78,3% 62,7% 7,6 rokov
Boston, MA 0,74 5.5 91,7% 88,1% 84,9% 78,8% 63,6% 7,8 rokov
Denver, CO 0.73 0.70 7.5 91,8% 88,2% 85,0% 78,9% 63,9% 7,9 rokov
Portland, OR 0.72 5.5 91,9% 88,3% 85,1% 79,1% 64,3% 8,0 rokov
Minneapolis, MN 0.70 5.5 92,0% 88,5% 85,4% 79,5% 65,1% 8,2 rokov
Paríž, Francúzsko 0,69 92,0% 88,6% 85,4% 79,6% 65,3% 8,3 rokov
Syracuse, NY 0,69 5.5 92,0% 88,6% 85,4% 79,6% 65,3% 8,3 rokov
Seattle, WA 0,69 4.5 92,0% 88,6% 85,4% 79,6% 65,3% 8,3 rokov
Madison, WI 0,69 5.5 92,0% 88,6% 85,4% 79,6% 65,3% 8,3 rokov
Londýn, Anglicko 0,68 92,1% 88,6% 85,6% 79,9% 65,6% 8,4 rokov
Viedeň, Rakúsko 0,68 92,1% 88,6% 85,6% 79,9% 65,6% 8,4 rokov
Toronto, Kanada 0.64 92,4% 89,1% 86,2% 80,7% 67,3% 8,9 rokov
Montreal, Kanada 0.63 92,4% 89,2% 86,3% 80,9% 67,7% 9,0 rokov
Olympia, WA 0.63 0.58 4.5 92,4% 89,2% 86,3% 80,9% 67,7% 9,0 rokov
Flagstaff, AZ 0.62 9 92,5% 89,2% 86,4% 81,0% 67,9% 9,1 rokov
Vancouver, BC 0.62 92,5% 89,2% 86,4% 81,0% 67,9% 9,1 rokov
Shannon, Írsko 0.61 0.58 92,5% 89,3% 86,5% 81,2% 68,3% 9,3 rokov
Bellingham, WA 0.61 4.5 92,5% 89,3% 86,5% 81,2% 68,3% 9,3 rokov
Varšava, Poľsko 0.60 92,6% 89,4% 86,6% 81,4% 68,6% 9,4 rokov
Big Bear City, CA 0,59 0,54 9 92,7% 89,6% 86,8% 81,6% 69,1% 9,6 rokov
Dublin, Írsko 0.58 0,54 92,7% 89,6% 86,9% 81,8% 69,4% 9,7 rokov
Rygge, Nórsko 0,52 93,1% 90,2% 87,7% 83,0% 71,6% 10,6 rokov
Juneau, AK 0,47 0,41 4.5 93,4% 90,7% 88,3% 83,8% 73,2% 11,4 rokov

Poznámka: tbleakne naznačuje, že rozdiely v teplote môžu mať ešte väčší účinok :
Arrhenius Factor: Exp (- (DeltaE) / kT) kde:

  • T je absolútna teplota
  • DeltaE je aktivačná energia.

Súhlasím s tým, že faktor Arrhenius je veľmi dôležitý, ale ako rýchlo sa mení s teplotou, závisí od aktivačnej energie chemického procesu, ktorý spôsobuje našu degradáciu. Vyššia aktivačná energia znižuje absolútnu veľkosť faktora, ale zvyšuje relatívnu zmenu faktora pre danú zmenu teploty. To má zmysel, pretože máme na mysli veľmi pomalý chemický proces.
60 F je 540 Rankin (absolútne). Zmena teploty 40 F (60 v porovnaní so 100 F) predstavuje iba 40/540 = 7% zmenu absolútnej teploty, napriek tomu vidíme možno 5 až 1 zmenu relatívnej miery degradácie ľudí v rôznych klimatických podmienkach.
Vaše pravidlo, že “zvýšenie teploty o 10 stupňov Celzia zdvojnásobuje stratu kapacity batérie” znamená určitú aktivačnú energiu. Veľké rozdiely medzi degradáciou ľudí na tomto fóre naznačujú, že vyššia aktivačná energia môže byť bližšia.

Skutočné svetové straty kapacity batérie

Aj keď bolo zaznamenaných 112 zdokumentovaných prípadov straty kapacity batérie jedného alebo viacerých pruhov (k 10/13/2012), podľa našich vedomostí bolo spoločnosti Nissan hlásených iba 58 prípadov straty kapacity. Geografické rozdelenie týchto prípadov je: Arizona – 53, Texas – 23, Kalifornia – 31, Oklahoma – 1, Hongkong – 1, Španielsko – 1, Neznáme – 72, dva bary – 29, tri bary – 9, štyri pruhy – 2. Z 40 listov, ktoré stratili 2 kapacitné bary, 33 sú v Arizone, 4 v Texase a 3 v Kalifornii. Väčšina listov, ktoré stratili 3 alebo 4 alebo 5 kapacít s kapacitou, je v Arizone. Na základe približne 450 listov predávaných v Arizonek 22. septembru 2012 aspoň 11,8% Arizona Leafs stratilo kapacitný bar. Keďže v tomto výpočte sú zahrnuté iba prípady hlásené na fóre, reálne číslo bude pravdepodobne oveľa vyššie.

Spoločnosť Joeviocoe vytvorila veľmi peknú dynamickú tabuľku Geographic Analysis of Nissan Leafs s stratou kapacity batérie , ktorá má teraz kompletnejšiu mapu Google, ktorá mapuje všetky hlásené listy s stratou kapacity batérie a zobrazuje detailné informácie o každej správe na myši.

Okrem toho spoločnosť Devin vygenerovala túto geopriestorovú analýzu prieskumu batérie LEAF Plug In America, ktorý zobrazuje dáta o solárnom zaťažení od spoločnosti NREL. Vytvorené v ArcGIS z údajov zozbieraných 27. marca 2014.

Analýza hlásených prípadov straty kapacity batérie

Zatiaľ čo sa predpokladá, že expozícia vysokým teplotám okolia je prevládajúcim faktorom pri strate kapacitných stĺpcov, analýza Stoaty z 26 hlásených prípadov v oblasti metra Phoenix ukázala, že medzi mesiacmi vedenými za mesiac a mierou strata kapacity batérie, Koeficient korelácie bol 0,51 a lineárna regresia naznačovala, že tí, ktorí jazdia 1800 míľ za mesiac, mali 2% za mesiac stratu kapacity v porovnaní s 1% za mesiac pre tých, ktorí jazdili 900 míľ za mesiac. Priemerný čas strácať jednu kapacitnú lištu bol 11,9 mesiacov, s rozsahom 7-16 mesiacov. Pamätajte, že to platí len pre majiteľov Phoenixu, ktorí stratili kapacitný rad, nie pre všeobecnú populáciu listov. Analýza naznačuje, že ďalším faktorom ovplyvňujúcim strata kapacity batérie je niečo spojené s nabíjaním a vybitím akumulátora (ponechanie Leafa na vysokej úrovni nabitia, veľká hĺbka vybitia, počet cyklov nabitia batérie atď.). Podobná analýza Texas Leafs, ktorá stratila jednu kapacitnú lištunevykazovala žiadnu koreláciu medzi mesačným najazdením kilometrov a mierou úbytku kapacity, ale vzorka bola oveľa menšia (12 listov) a klimatické rozdiely medzi rôznymi oblasťami mohli dominovať. Phoenix Leafs, ktorý stratil lištu, vykazoval priemernú mieru úbytku kapacity 1,3% mesačne; pre Texas Leafs hodnota bola 1,2% za mesiac.
Analýza dostupných údajov pre všetky listy, ktoré stratili druhú lištu, ukázala, že priemerný čas medzi stratou tyčí jeden a dva bol 52,7 dní . Priemerná miera straty kapacity medzi jedným a dvom barmi bola 3,7% za mesiac (ale všimnite si, že väčšina týchto strát bola počas horúceho leta, takže nemusíte extrapolovať tieto straty do iných oblastí krajiny alebo iných období roka). Neexistovala žiadna korelácia medzi najazdenými kilometrami a rýchlosťou úbytku kapacity medzi tyčkami jedna a dve.

Test rozsahu na vozidlách so stratou kapacity batérie

V snahe zistiť, aký rozsah bol ovplyvnený pre tých, ktorí stratili kapacitu batérií, skupina majiteľov pod vedením Tonya Williamsa urobila test rozsahu 12 áut v Tempe, Arizona dňa 15. septembra 2012. Veľmi úroveň kurzu bol riadený 100 km / h, merané na palube GPS na zemi (rýchlosť 62 mph, rýchlosť 64 mph, ako je zobrazená na rýchlomere LEAF) s aktivovaným tempomatom. Odhadla sa, že táto rýchlosť prinesie cieľovú mieru využitia energie vo výške 6,437 km / kWh bez kontroly klímy. Na základe oficiálnych údajov zverejnených Nissanom nižšie (od Nissan Technical Bulletin), bolo zistené, že nový automobil bude jazdiť 84 míľ (135 km), až kým sa neuskutoční režim “želvy” (režim zníženej spotreby, aby sa vozidlo bezpečne dostalo z cesty predtým, než batéria úplne vypne energiu). Okrem rozsiahleho testovania od Tonyho Williamsa, ktorý ukázal, že je to rozsah nového listu, existuje ďalší test, ktorý ukazuje rozsah najmenej 84 míľ . Ďalšie potvrdenie rozsahu nového listu pochádza zo štrajku listu NREL, ktorý odhalil použiteľnú energiu nového listu na 21,381 kwh, čo by malo za následok rozsah 85,5 míle pri 4 míľ / kwh:

Graf z NTB11- 076a (platí len pre nový list) je zobrazené nižšie:

Jedným z odpočtov z tejto tabuľky je, že Nissan očakáva rozsah použiteľnej kapacity batérie 19-21 kwh, keď je vozidlo nové. Bolo by prekvapujúce, keby výrobné tolerancie boli také veľké, takže to môže byť spôsobené rozdielmi v čase medzi výrobou a kedy kupujúci prevezme dodávku, alebo je pravdepodobnejšie, že poskytne určitý priestor pre niektorých predajcov, ktorí skladujú nepredané listy pri 100% SOC v horúce slnko. Ďalšou možnosťou je, že do 1 kwh môže dôjsť z dôvodu nevyváženosti balenia. Štvrtým možným vysvetlením rozsahu v tabuľke je variabilita v meracom stroji z dôvodu presnosti prístrojov (tj Gids).
Výsledky testu Tempeho rozsahu sú uvedené nižšie:

krídlo Kapacita bary Uložená energia (dýchacie cesty) Míle (km) % Nová kapacita auta Rozdiel Počet km (km) M / kWh Dátum vytvorenia voltov GOM Komentáre
Blue494 8 61,9% 59,3 (94,9) 70,6% 8,7% 29000 (46500) 3.7 4/2011 56
White272 10 70,8% 66,1 (105,8) 78,7% 7,9% 17500 (28000) 4.4 3/2011 68
Blue744 9 67,0% 72,3 (107,7) 80,1% 13,1% 22400 (36000) 4.4 4/2011 352,0 63 Žiadna korytnačka;1 míle po VLB;pridaná 5 míľ
Red500 9 67,6% 73,3 (110,9) 82,5% 14,9% 22500 (37000) 4.4 2/2011 342,5 66 Žiadna korytnačka;2 míle> VLB: Pridané 4 míle
White530 10 71,9% 69,7 (111,5) 83,0% 11,1% 12000 (20000) 4.0 4/2011 73
Red429 10 74,7% 71,8 (114,9) 84,5% 9,8% 11500 (18500) 4.3 3/2011 74
Silver679 10 75,8% 71,8 (114,9) 84,5% 8,7% 14750 (24000) 4.2 5/2011 303.5 75 18,2 km po LBW
Blue917 10 71,5% 72,5 (116) 86,3% 14,8% 13900 (22500) 4.1 5/2011 310,5 67
White626 10 71,5% 73,5 (117,6) 87,5% 16,0% 17 300 (28 000) 4.3 4/2011 317.5 73 Kapacity Bary boli 10, vynulované na 12, teraz 11
Blue534 10 75,0% 75,7 (121,8) 90,1% 16,1% 16000 (26000) 4/2011 315,5 74 ECO = 84
Black782 (San Diego) 12 88,6% 76,6 (122,6) 91,2% 2,6% 7 000 (11 000) 3.9 4/2012 295 88 ECO Out4.0 / In3.8;LBW 6,9, VLB 6,5
Blue842 12 85,0% 79,6 (127,4) 94,7% 9,7% 2 500 ((4 000)) 4.1 4/2012 76
RedXXX 12 100,0% 88.3 100,0% 100 4.2 8/2012 Kontrolné vozidlo beží v iný deň

Podrobnejšie výsledky vydal Tony Williams, ktorý ukázal, že dve autá nedosiahli korytnačku, ale urobili mierne úpravy, aby ich porovnali s inými autami.
Percento kapacity je založené na rozmedzí vozidla rozdelenom o 84 míľ na nový list. Výsledky testov sa veľmi zhodujú so známymi kapacitami pre dve vozidlá testované v Casa Grande. Red500 (Azdre / opossum) testovaný Nissanom o 85% a počas testu rozsahu bol na 82,5%. Biela 626 (Ticktock) testovaná na 87% Nissan a 87,5% počas testu rozsahu.
Na základe práce Klapazia, zdá sa, že zdanlivá kapacita sa môže vypočítať z rozmedzia v míľach vydeleného mierami na kwh, ktoré dosiahlo konkrétne vozidlo. Percento zdanlivej kapacity sa môže vypočítať tak, že zdaniteľná kapacita sa rozdelí o 21 kwh, čo sa všeobecne považuje za využiteľnú kapacitu nového listu. Stĺpce v tabuľke a grafy s použitím zdanlivej percentuálnej kapacity boli pôvodne zahrnuté tu, ale boli odstránené z dvoch dôvodov: 1) výsledky boli veľmi podobné grafom použitím percentuálnej kapacity a 2) spoliehali sa na prístroje, ktoré sú pravdepodobne chybné.
Tu je graf percentuálnej kapacity v percentách percenta (s použitím opravených údajov vyššie). Lineárna regresia má korelačný koeficient 0,84. Upozorňujeme, že 95% Gids predpovedá 100% kapacitu na základe lineárnej regresnej línie:

Tu je graf percentuálnej kapacity vs celkového počtu kilometrov. Lineárna regresia má korelačný koeficient -0,85. Všimnite si, že na základe linky lineárnej regresie by ste pre každú 10 000 míľ jazdy stratili 7,5% kapacity rozsahu.

Stoaty poznamenal, že “jedna vec je jasná z údajov Tonyho: percento Gids je nižšie ako percento” New Leaf Range “(84 míľ) v každom jednotlivom prípade . Je rozumné odvodiť, že Leaf so 100% Gidami by mal aspoň100% “nového rozsahu listov”. Vidíme dobré dôkazy o systematickom zaujatosti v percentách Gid tak, že pod správou dostupného rozsahu. “Percentuálny rozsah kapacity bol v priemere o 11% väčší ako predpovedal Gid Percent, so štandardnou odchýlkou 4%. Inými slovami, v priemere pridaním 11 percentuálneho podielu Gid pri plnom zaťažení vám poskytne blízku aproximáciu aktuálneho rozsahu. Avšak v prípade dvoch listov s Gid Percentage s minimálne 85% Gid zostáva percentuálny podiel, ktorý sa pridáva na získanie odhadovanej kapacity rozsahu, oveľa nižší, v priemere 6%. To naznačuje, ale nedokazuje, že pri nižších percentách Gid sa meradlo Gid stane čoraz pesimistickejším pri predpovedaní aktuálneho rozsahu. Percento Gid presne neurčuje rozsah. Výpočty odhaľujú, že zdanlivá strata kapacity založená na percentách Gid, v priemere 42% bolo spôsobené chybou prístroja (rozsah 22-64%) a ostatných 58% bolo spôsobené skutočnou stratou kapacity batérie. Percentuálny podiel v dôsledku chyby nástroja = rozdiel / (100% Gids).
Ingineer komentoval problémy súvisiace s presným meraním SOC :
“Najväčší problém s nástrojom Leaf’s Instrumentation / BMS (podľa môjho názoru) je použitie senzora prúdu Hall-effect. Tieto údaje nie sú veľmi presné pre počítanie coulombov a podliehajú presným degradačným efektom, ako sú driftová dráha, účinky zemského magnetického poľa, teplota atď. Nepresnosť tohto je dôvod, prečo “niektoré giddy sú viac rovnocenné než ostatné”. Nissan kompenzuje túto nepresnosť tým, že aplikuje korekcie na SoC vzorkovaním napätia a používa vzorce, ktoré zohľadňujú aj teplotu, vnútorný odpor, starnutie atď. Preto môžete náhle získať / stratiť SoC niekedy po napájaní. Všetky zmeny sa vykonajú naraz, ak je auto napájané z cyklu, ale ak sa používa, použije korekciu v podobe driftu, ktorý sa zobrazí ako rýchlejšie / pomalšie sčítanie SoC než reálna energia. ”
Drees pripomienky k úbytku rozsah :
“Všetci vieme, že priemerný užívateľ nemá rád ísť pod LBW – čo znamená, že opustil 4 kWh (z 22,5 kWh za predpokladu 281GID a 1GID = 80Wh) na stole. Zavoláme 100% – LBW “použiteľný”.
100% kapacita = 22,5 kWh – 4 kWh = 18,5 kWh, 66 mi pred LBW.
90% kapacita = 20,3 kWh – 4 kWh = 16,3 kWh, 58 mi pred LBW, 12% zníženie využiteľného rozsahu.
85% kapacita = 19,1 kWh – 4 kWh = 15,1 kWh, 54 mi pred LBW, 19% zníženie využiteľného rozsahu.
80% kapacita = 18,0 kWh – 4 kWh = 14,0 kWh, 50 mi pred LBW, 25% zníženie využiteľného rozsahu.
70% kapacita = 15,8 kWh – 4 kWh = 11,8 kWh, 42 mi pred LBW, 36% zníženie využiteľného rozsahu.
Takže pre väčšinu ľudí (ktorí sa vo všeobecnosti pokúšajú vyhnúť sa LBW a nižšiemu), čím väčšia je strata kapacity – tým horšie je zníženie rozsahu o 20% horšie z dôvodu pevného nastavenia LBW. To by mohlo byť ešte horšie, pretože sa zdá, že BMS zdá, že pochováva ešte viac batérie pod LBW, akonáhle stratíte bar alebo viac … ”

Odpovede a akcie spoločnosti Nissan

Tu je oficiálna odpoveď spoločnosti Nissan vo forme otvoreného listu majiteľom Nissan LEAF . Tony Williams vedie aktualizovanú chronológiu udalostí týkajúcich sa straty kapacity batérie .
Zhrnutie výsledkov testovacích údajov uvedených na fóre (nie od spoločnosti Nissan):
Koncom júla 2012 spoločnosť Nissan prevzala 6 z najvážnejšie postihnutých listov s výraznou stratou kapacity v testovacom zariadení Casa Grande v Arizone . Majiteľ jedného listu, Scott Yarosh, dostal svoj Leaf späť s 3 kapacitnými tyčami, ktoré stále chýbajú (27,5% strata kapacity), hoci Nissan vybral batériu na skúšku a povedal mu, že má iba 15% straty . Nissan neskôr uviedol, že celkový počet testov automobilov bol sedem, Ďalšiemu vlastníkovi, Azdre / opossum, bolo povedané, že jeho list má 15% straty kapacity , aj keď Leaf ešte ukázal 2 chýbajúce kapacity (21,25% straty kapacity). Ich list má druhú najlepšiu zostávajúcu kapacitu – to najlepšie bolo 14% straty. Tretí vlastník, TickTock, dostal svoje auto späť so všetkými 12 kapacitnými tyčami obnovenými . Jeho testovanie naznačilo, že nedosiahol žiadnu kapacitu, ale že bol nesprávne kalibrovaný snímač a jeho Leaf teraz presnejšie hlási skutočnú stratu kapacity. Odhadol, že jeho skutočná strata kapacity bola 15%, nie 23% . Ďalšie testovanie ukázalo, že hodnota Gid (jednotka energie približne zhruba 80 wattov, nazvaná pre Garyho Giddingsa, ktorý navrhol a postavil meter na zobrazenie stavu nabitia batérie) jezrejme závisí od teploty . Spoliehanie sa na meter Gid vedie k nahustenému odhadu straty kapacity batérie. Celé vlákno si môžete prečítať tu .
Od 8. septembra 2012 obmedzené výsledky, ktoré sú k dispozícii v testoch spoločnosti Nissan, naznačujú, že časť zdanlivej straty kapacity je v niektorých prípadoch spôsobená tým, že Leaf vykazuje o niečo väčšiu stratu kapacity, ako skutočne existuje (o 2% vyššia o 6%, o 12,5% v jednom prípade). Avšak všetky z testovaných listov, okrem jedného, mali aspoň 15% stratu kapacity, čo naznačuje, že problém je viac než len nesprávne hlásenie kapacity batérie.
22. septembra 2012 vydala Nissan ďalší otvorený list o svojich zisteniach z testovania v spoločnosti Casa Grande:

  • Kontroly Nissan LEAF v Arizone pracujú podľa špecifikácie a ich strata kapacity batérie v priebehu času je v súlade s ich používaním a prevádzkovým prostredím. Neboli nájdené žiadne chyby batérie.
  • Malý počet majiteľov vozidiel Nissan LEAF v Arizone zažíva väčšiu ako priemernú stratu kapacity batérie v dôsledku svojho jedinečného cyklu použitia, ktorý zahŕňa prevádzkové kilometre, ktoré sú v krátkom časovom období vyššie ako priemerné v prostredí s vysokou teplotou.
  • Nissan požiadal Chelsea Sextona, vášnivého advokáta pokročilých technológií, aby zorganizoval nezávislú globálnu poradnú radu (členov vybrali Chelsea)

Navyše, Mark Perry z Nissan North America bol citovaný, keď hovoril, že problém súvisel s vysokým kilometrovým počtom zasiahnutých listov , aj keď niektoré z testovaných listov dosahovali priemernú hodnotu v porovnaní s normou Nissan na 12 000 míľ za rok. Článok bol neskôr aktualizovaný citátom od spoločnosti Nissan: “Priemerný kilometrový počet prešetrovaných automobilov bol 19,600 míľ a priemerná dĺžka prevádzky bola 14,7 mesiaca,” napísala spoločnosť Katherine Zachary. “Priemerný ročný počet kilometrov týchto vozidiel je okolo 16 000 ročne, čo je viac ako dvojnásobok priemerného zákazníckeho kilometra Phoenixu vo výške 7.500 míľ ročne.” Mark Perry taktiež odhalil prvýkrátže štandardné projekcie Nissanu s kapacitou 80%, ktoré si ponechali 5 rokov a 70% za 10 rokov, sú “založené na testovaní batérií počas vývoja listu, predpokladajú, že auto pokrýva 12.500 míľ ročne, v klimatických podmienkach, ktoré sú z veľkej časti podobné tomu v Los Angeles 50 až 90 stupňov F, s priemernou teplotou 68 alebo 70 stupňov. ” Článok v spoločnosti Ineview oznámila, že Nissan plánuje po 5 rokoch 76% kapacitu batérie zadržanej pre Arizona Leafs. V článku sa tiež uvádza, že v južných Spojených štátoch je 147 prípadov straty najmenej jedného kapacitného panela, pričom 47 z nich má menej ako 12 000 míľ za rok. V otvorenom liste ani v komentároch Mark Perryho o žiadosti od Andyho Palmera z Nissanu sa nezmienila žiadna zmienka o tom, že problém je spôsobený chybným displejom na úrovni batérie .
Dňa 26. septembra 2012 bolo oznámené, že spoločnosť Nissan súhlasila so spätným odkupom dvoch Arizona Leafs so skorou stratou kapacity ako dobrým gestom podľa podmienok vytvorených podľa zákona Arizona Lemon Law . Inžinier Nissan sa stretol s Ticktockom, jedným z agentov Casa Grande 7 a odpovedal na otázky o výsledkoch testu. Kým nebol povolený vytvárať kópie všetkých grafov alebo iných materiálov, Ticktock rekonštruoval graf, ktorý ukázal na očakávanú stratu kapacity batériepre Phoenix, Boston a priemer pre USA Graf ukazuje prudký pokles kapacity batérie v prvom roku, s očakávanou stratou kapacity vo Phoenixe a 7% v Bostone. Väčšina ostatných oblastí krajiny by klesla niekde medzi nimi, s výnimkou Seattle, ktorá má pravdepodobne ešte nižšiu kapacitu ako Boston. Krivky sú založené na každoročnom kilometri len 7 500 km pre Phoenix a vyššie, ale neznáme ročné kilometre pre Boston:

4. októbra 2012 Nissan vydala video Chelsea Sextona rozhovorom Andy Palmer , Nissan výkonný viceprezident pre plánovanie produktov. Boli urobené nasledujúce body:

  • Na stanovenie degradačných očakávaní Nissan používal ako normu jazdný cyklus LA4 a 12,500 míľ za rok
  • Pre túto normu je očakávaná degradácia 80% za 5 rokov a 70% za 10 rokov
  • Existujú 4 premenné, ktoré ovplyvňujú, či sa dosiahne táto miera:
  • Rýchlosť a gradient, na ktorom rýchlosť jazdy na diaľnici bude mať väčšiu degradáciu
  • Časté rýchle nabíjanie (odporúčame maximálne jeden QC za deň)
  • Miles riadené za rok
  • teplota
  • Arizona Leafs dosahujú v priemere 7500 míľ za rok (ale pred predajom Leaf v Arizone to nebolo známe, je to post hoc informácie)
  • Na základe 7500 míľ za rok sa predpokladá, že Arizona Leafs si ponechajú 76% kapacity po piatich rokoch (preklad: ak má Arizona Leafs “len” 24% úbytok kapacity za 5 rokov, obmedzuje sa na 37,500 míľ a len riadenie menej náročného cyklu LA04)
  • Kapacitný meter ukazuje “pesimisticky”
  • Leaf má 95% mieru spokojnosti, najvyššiu z akéhokoľvek auta, ktoré Nissan predáva
  • 2013 modelový rok bude mať evolučné, nie revolučné zmeny; presnosť meradla je riešená
  • Nissan hľadá možnosti riešenia sťažností na stlačenie “OK” na navigačnej obrazovke pri každom zapnutí funkcie Leaf

Poznámka: jazdný cyklus LA4, tiež známy ako plán jazdy na mestskom dynamometri EPA , predstavuje podmienky jazdy v meste. Nižšie je uvedené:

7. júna 2013 spoločnosť Nissan oznámila , že záruka na batériu sa bude vzťahovať na listy 2011-2012 Leafs a že aktualizácia softvéru zlepší presnosť ukazovateľa kapacity batérie na rovnakú úroveň ako listy 2013.
Zatiaľ čo spoločnosť Nissan neuviedla cenu náhradnej batérie, spoľahlivé zdroje (Ingineer a EVdriver) na mynissanleaf uviedli, že náhradný balík má MSRP vo výške 5 000 USDa že cena by mala byť ešte nižšia, akonáhle začne závod Smyrna, Tennessee na začiatku roka 2013. Ak by to bolo potvrdené, urobilo by to náhradné balenie životaschopnou možnosťou pre niektorých, ak sa batéria Leaf zlyhá skôr, než sa očakávalo. Avšak Chelsea Sextonovi povedal Andy Palmer z Nissan, že táto cena je príliš nízka .

Skutočné akcie na odstránenie akumulátora

Minimalizácia straty kapacity batérie

Pred zakúpením alebo prenájmom listu skontrolujte Faktor starnutia batérie pre vaše mesto / štát v časti Faktory ovplyvňujúce stratu kapacity batérie . Ak je váš faktor starnutia vyšší ako 1,1, pravdepodobne dôjde k rýchlejšej strate kapacity. Čím je číslo vyššie, tým je pravdepodobnejšie, že sa stretnete s problémami.
Ďalšou metódou odhadovania pravdepodobnosti straty kapacity batérie súvisiacej s teplotou, ktorú máte v súvislosti s teplotou, je dodržiavať pokyny navrhnuté Weathermanom :

  • Ak takmer vždy vidíte päť barov alebo menej na meradle teploty batérie a dostanete iba šesť barov niekoľko krát každé leto … Nebojte sa o to.
  • Ak vidíte päť barov alebo menej v zimnej polovici roka a pomerne často vidíte šesť barov v priebehu letného polčasu … Pravdepodobne uvidíte stratu, o ktorú tvrdí Nissan (20% straty za 5 rokov a 30% straty pri 10 rokov).
  • Ak vidíte šesť prúžkov, je to bežné počas veľkej časti roka a počas letných mesiacov sa príležitostne objavuje aj siedma bar … Zvažte lízing namiesto nákupu listu
  • Ak strávite veľkú časť leta so siedmimi teplotnými pásmi alebo viac, ktoré ukazujú … Pravdepodobne je najlepšie vyhnúť sa listu úplne. Zvážte EV s aktívnym systémom tepelného riadenia alebo Chevy Volt.

Môžete sa na fóre pýtať, koľko batérií teploty batérie sa zvyčajne stretávajú s ostatnými, ktorí žijú vo vašej oblasti.
Treťou metódou je skontrolovať drsný model vyvinutý spoločnosťou Surfingslovak,aby ste pomohli odhadnúť, koľko straty kapacity môžete očakávať v súvislosti s vašou konkrétnou geografickou polohou a plánovaným ročným počtom najazdených kilometrov. Miestnu kópiu si môžete stiahnuť aj cez súbory -> Stiahnuť ako -> Microsoft Excel. Všimnite si, že model je v niektorých prípadoch príliš pesimistický a príliš optimistický v iných, takže sa na ňu doslovne nespoliehajte. Napríklad predpovedá stratu kapacity 33% pre majiteľov Phoenixu, ktorí jazdia 7500 míľ za rok, kým Nissan uvádza 24% straty z ich údajov.
Pre tých, ktorí už vlastní Leaf, môžete urobiť niekoľko krokov na minimalizáciu straty kapacity batérie:

  • Udržujte stav nabíjania v rozsahu 30-40% (na merači Gid) tak dlho, ako je to možné. Toto zhruba zodpovedá 3-4 palivovým tyčom pre nový list. Nabíjajte až 80% alebo 100% hneď, ako budete potrebovať dlhšiu jazdu.
  • Ak je to možné, používajte cyklus “Shallower” (DOD) akumulátora. Napríklad dva cykly s 60% až 30% SOC namiesto jedného cyklu od 90% do 30% by mali byť lepšie pre batériu.
  • Ak je to možné, vyhnite sa parkovaniu na slnku. Solárne zaťaženie môže zvýšiť ročnú priemernú teplotu batérie o 1,3 až 3,1 stupňa Celzia pre vozidlo vždy zaparkované na slnku (na základe štúdií Priusu)
  • Riaďte a zrýchľujte pomalšie a efektívnejšie. To bude mať dva dôsledky:
  • Minimalizácia odpadového tepla (odhaduje sa na 1% pri výkone výkonu 10 KW, 3% pri výkone výkonu 30 KW )
  • Zníženie cyklu batérie pri rovnakom počte kilometrov, čo zníži stratu bicyklov

Ak chcete monitorovať teplotu batérie, môžete použiť aplikáciu Leaf Battery Application .
Tu je niekoľko užitočných tipov od Ingineer na fóre MNL

Čo robiť kvôli strate kapacity

Zavolajte a oznámte spoločnosti Nissan stratu kapacity batérie : 877-NO-GAS-EV ( 1-877-664-2738 ). V súčasnosti spoločnosť Nissan zaznamenáva iba hlásenia o strate kapacity batérie a priraďuje každému hláseniu “číslo prípadu”; neexistuje žiadna ďalšia oficiálna činnosť.
Pre súčasných majiteľov, ktorí sú postihnutí výraznou stratou kapacity batérie, môžete podať sťažnosť podľa vašich zákonov Lemon Law, ak sú k dispozícii. 24. septembra 2012 bol podaný žalobný žaloba, Humberto Daniel Klee a kol. v. Nissan North America, Inc. a kol., prípad č. 12-cv-08238, americký okresný súd, centrálna oblasť Kalifornia, západná divíziaktorá bola podaná v mene vlastníkov Arizony a California Leaf. Súdny spor tvrdí, že spoločnosť Nissan “neuviedla svoje vlastné odporúčania, aby sa majitelia vyhnuli nabíjaniu batérie nad 80%, aby zmiernili škody na batérii a nedokázali zistiť, že odhadovaná vzdialenosť 100 míľ od spoločnosti Nissan je založená na batérii s úplným nabitie, čo je v rozpore s normou spoločnosti Nissan vlastné odporúčania pre nabíjanie batérií. “Ďalej tvrdí, že spoločnosť Nissan” neoznámila a / alebo úmyselne nevynechala odhalenie defektu dizajnu v systéme batérie Leaf, ktorý spôsobuje, že list má “rozsiahlu, vážnu a predčasnú stratu jazdného dosahu, kapacitu batérie a životnosť batérie. “Môžete tiež prečítať skutočné podanie súdu tu:

Krytie médií

Aktualizované dňa 12. októbra 2018

zdroj clanku : http://www.electricvehiclewiki.com/wiki/battery-capacity-loss/príznaky

Kolik stojí nejlevnější elektromobil? Cena vás překvapí | E.ON

Kolik stojí nejlevnější elektromobil? Cena vás překvapí

Automobil Elektřina Emise Investice Rodinný rozpočet

  •  Elektrický pohon má poloviční, nebo dokonce čtvrtinové provozní náklady ve srovnání s konvenčním spalovacím motorem.
  •  Pokud hledáte levný a zároveň praktický elektromobil, cena je stejně důležitým kritériem jako kapacita baterie nebo výkon motoru.
  • Cenu elektromobilů mohou snižovat různé dotace. V Česku ale zatím žádné dotační programy na elektromobily pro běžné občany nefungují. 

Tesla vyrábí nejvyhledávanější elektromobil. Cena dosahuje milionů korun

Nevypouští žádné škodlivé emise, jezdí velice levně a specializované nabíječky doplní dostatek energie snesitelným tempem, řádově za desítky minut. Asi dobře znáte výhody, proč koupit elektromobil. Cena elektrických aut bohužel uvedené klady relativizuje a zapříčiňuje, že řidiči nadále upřednostňují benzín. Nejlepší bezemisní vozidlo současnosti, Model S od Tesla Motors stojí v základní verzi kolem 2 000 000 korun a včetně všech vychytávek přes 3 miliony korun. Nejlevnější elektromobil seženete skoro pětkrát laciněji.

Elektromobil Orientační cena (Kč, základní) Výkon (kW) Baterie (kWh) Hmotnost (t) Délka x Šířka (m)
Tesla Model S 2 000 000 310 70-90 2,1 5 x 2
BMW i3 1 000 000 125 18,8 1,2 4 x 1,8
Nissan Leaf 850 000 80 30 1,5 4,4 x 1,77
Kia Soul EV 850 000 81 27 1,6 4,4 x 1,8
Peugeot iOn 720 000 47 16 1,1 3,5 x 1,5
Volkswagen e-Golf 930 000 85 24 1,6 4,2 x 1,8
Volkswagen e-Up! 605 900 40 18,7 1,2 3,5 x 1,6
Mercedes-Benz B ED 1 020 000 132 28 1,8 4,3 x 1,77

Nejlevnější elektromobil stojí podobně jako vozidla na benzín

Šikovný kutil může sestrojit bezemisní dopravní prostředek i doma, svépomocí. V předchozí tabulce srovnáváme vybrané modely nejvyhledávanějších automobilek – stojí řádově statisíce korun, ale garantují odpovídající kvalitu. Chybí Renault Zoe, který bývá někdy jmenovaný jako nejlevnější elektromobil. Cena vychází v přepočtu kolem 320 000 Kč, ovšem pouze ve Francii a včetně tamních dotací, na českém trhu vás tento vůz přijde na více než dvojnásobek. Nejlevnějším elektromobilem v Česku tak zůstává Volkswagen e-UP se základní cenou něco málo přes 600 000 Kč.

RADA

Celkové náklady srovnávejte vzhledem ke vstupní investici, provozním výdajům a předpokládanému nájezdu. Pamatujte, že existují zvýhodněné distribuční sazby D27d a C27d. Pro často používaný, v nízkém tarifu nabíjený elektromobil cena elektřiny z domácí zásuvky vyjde zhruba na 0,003 Kč/Wh. Během kilometrové jízdy můžete spotřebovat jenom 135 Wh, což znamená 0,4 Kč/km. Vůbec nejlevnější elektromobil poznáme tak, že dostaneme nejnižší výsledek následujícího výpočtu: pořizovací investice + (předpokládaný nájezd v kilometrech x cena kilometrové jízdy).

Zdroj: Kolik stojí nejlevnější elektromobil? Cena vás překvapí | E.ON

Hyundai Ioniq Electric Test Drive – Technologický blog

Hyundai Ioniq elektrický skúšobný pohon

Zdroj: Hyundai Ioniq Electric Test Drive – Technologický blog

Elektromobily (VŠETKO, ČO CHCETE VEDIEŤ) 

Elektromobily (VŠETKO, ČO CHCETE VEDIEŤ)

Elektromobily dnes už nie sú len utopickou víziou automobilového priemyslu, ale realitou, ktorá si získava stále väčší podiel na trhu. Podľa štatistík Európskej asociácie výrobcov automobilov vzrástol v tomto roku počet predaných elektromobilov v Európskej únii o 37,6 percent. A Alza chce toto číslo podporiť a na Slovensku ako prvý e-shop začína sama elektromobily predávať. Aké elektricky poháňané autá si u nás môžete kúpiť a aké sú vlastne výhody a nevýhody oproti bežným autám? V článku nájdete aj porovnanie vybraných modelov.

Elektromobil BMW i3

Čo sú elektromobily a ako fungujú?

Zo všetkého najskôr sa však ponúka otázka, čo to vlastne elektromobily sú a ako sa líšia od bežných áut so spaľovacími motormi. Elektromobily sú vozidlá poháňané elektrickou energiou z batérií, palivových článkov a niekedy aj zo solárnych panelov. A hlavne neobsahujú tradičné komponenty, ktoré môžeme nájsť v prípade zážihových a vznetových vozidiel. Ide o spaľovací motor, výfukový systém, prevodovku, ale aj zapaľovacie sviečky, spojku alebo napríklad olej. Z toho plynie množstvo výhod, ale tiež nevýhod.

Začiatky elektromobilov siahajú až do 19. storočia

Hoci sa to môže zdať prekvapivé, premiéru si elektrické vozidlá odbili nie v 21., ale 19. storočí. Prvé auto na elektrický pohon totiž skonštruoval holandský profesor Sibrandus Stratingh už v roku 1835. Tento fakt je o to zaujímavejší, že prvý automobil na spaľovací motor zišiel z linky až takmer 50 rokov potom. Nie je teda prekvapením, že v USA na začiatku 20. storočia jazdilo viac elektromobilov ako áut so spaľovacím motorom. Všetko zmenil až vynález elektrického štartéra a začiatok sériovej výroby vozidla Ford T americkou spoločnosťou Ford Motor Company. Vozidlo znamenalo historický míľnik v masovej popularite automobilov v USA a doslova „postavilo Ameriku na kolesá“. Po tejto revolúcii ustupujú elektromobily do ústrania a zostávajú tu až do začiatku 21. storočia.

Jeden z prvých elektromobilov by dnes stál vyše 38 tisíc eur

Jedným z prvých sériovo vyrábaných elektromobilov bol automobil od americkej splečnosti Baker Motor Vehicle. Spoločnosť sa vtedy pýšila titulom „Najväčší výrobca elektromobilov na svete.“ Vozidlo, ktoré spoločnosť vyrábala od roku 1899 do 1915, ponúkalo dojazd až 80 km s maximálnou rýchlosťou 23 km/h. Vozidlo Baker Electric si mohli američania kúpiť za vtedy pomerne vysokú sumu 2 300 dolárov (cca 2 000 eur). V dnešnej dobe by vozidlo stálo cca 63 300 dolárov, teda asi 53 444 eur.

Prvý elektromobil

Tesla a jej komerčný úspech elektromobilov

Z okraja záujmu pomohla elektromobily dostať americká spoločnosť Tesla Motors, ktorá sa okrem výroby elektromobilov zaoberá aj solárnymi panelmi a úložiskami elektrickej energie. Za všetkým stojí výkonný riaditeľ Elon Musk, známy vizionár, ktorý založil okrem iného aj firmu SpaceX, teda jednu z prvých súkromných kozmických spoločností.

Elektromobily Tesla X a Tesla S, ktoré začala firma vyrábať v rokoch 2008 a 2012, dnes patria medzi najznámejšie elektrické vozidlá s celosvetovou úspešnosťou. Ďalšie automobilky však nezaháľajú a v súčasnosti si môžete kúpiť napríklad elektromobil značiek BMW, Volkswagen, Hyundai, Nissan alebo Renault. Ani česká Škoda nechce byť pozadu a v oblasti elektromobilov sa mieni tiež angažovať. Oznámila napríklad plány pre svoj budúci elektromobil s označením Vision E.

Tesla S

Elektromobily sú nielen šetrné k životnému prostrediu, ale znížia vám aj náklady

Elektromobily majú svoje nesporné výhody. Kvôli absencii celého mnosžtvo komponentov oveľa menej znečisťujú ovzdušie ako autá so spaľovacími motormi, nie sú teda takou príťažou pre životné prostredie. Navyše sú prakticky bezporuchové a vďaka vysokému krútiacemu momentu od takmer nulových otáčok zaisťujú absolútne plynulú jazdu.

Najväčším ťahákom na kúpu elektromobilov však pre mnohých ľudí sú znížené prevádzkové náklady. Napríklad keď najazdíte za rok 30 000 km, prevádzkové náklady budú 4 centy na prejdený kilometer. Na porovnanie, najazdený kilometer v bežnom vozdile vás vyjde zhruba na 8 centov, a to len, ak je auto úsporné. Celkové ušetrené náklady na prevádzku elektromobilu sa teda môžu po 5 rokoch používania vyšplhať až na 9 600 eur. A to už je veľmi lákavá suma.

Nasledujúca tabuľka porovnáva približné prevádzkové náklady elektromobilov, hybridov a automobilov s dieselovým a benzínovým motorom. Uvádzame najznámejšie autá v každej kategórii, ktoré na Slovensku môžeme vidieť na ceste.

Vozidlo Tesla Model S 75D Toyota Prius Prime Škoda Octavia 1.9 TDI Ford Focus 1.6 L
Typ Elektromobil Hybrid Diesel Benzín
Cena za 1 km 1,3 centov 3,3 centov 6 centov 6,8 centov
Ročné náklady pri prejdení asi 30 000 km 415 € 1 000 € 1 785 € 2 060 €

Poznámka: údaje vychádzajú z priemerných cien pohonných hmôt v SR v prvej polovici roka 2017: 1 kWh – 7 centov, 1 l benzínu – 1,16 eur, 1 l nafty – 1,12 eur.

Elektromobily umožňujú zatiaľ obmedzený dojazd

Nič však nie je dokonalé a o autách na elektrický pohon to platí v nemalej miere. Medzi hlavné nedostatky patrí krátky dojazd na jedno nabitie batérie. Súčasný stav batérií v elektromobiloch síce nie je priamo zlý, priestor na zlepšenie tu však určite je. Dojazd na jedno nabitie sa v prípade lacnejších modelov totiž pohybuje iba medzi 100 až 200 km, čo je veľmi málo. Auto na spaľovací motor pritom na plnú nádrž bežne prejde aj viac ako 700 km. Premiantom vo výdrži batérie v elektromobile je Tesla S, ktorá bez pripojenia k zásuvke prejde až 466 km. To je zhruba polovica vzdialenosti v porovnaní s klasickými automobilmi.

Ani sieť dobíjacích staníc na našom území momentálne nie je príliš hustá. Podľa údajov z roku 2016 sa na Slovensku nachádza len asi 50 dobíjacích staníc pre elektromobily.

Elektromobil Nissan Leaf

Obstarávacia cena v prípade elektromobilov je vyššia ako pri vozidlách so spaľovacím motorom

Odrádzať od nákupu elektromobilov môže aj ich vyššia cena. Tie sa, samozrejme, líšia medzi jednotlivými značkami a modelmi, v priemere sú však elektromobily 2× až 3× drahšie ako ich benzínové a dieselové náprotivky v rovnakej kategórii. Napríklad cena luxusného sedanu Tesla S sa pohybuje okolo 80 000 eur v základnej výbave. Iné automobilky však ponúkajú aj lacnejšie modely. Model BMW i3 stojí 36 600 eur a Volkswagen e-Up! len 24 000 eur. Aj to je však za automobil veľkosti Škody Citigo pomerne veľa. A ak ceny v dohľadnej dobe neklesnú, aj naďalej si elektromobily v drvivej väčšine budú kupovať len používatelia s nadpriemernými príjmami.

Elektromobil Tesla Model S 75D VW e-Up Nissan Leaf BMW i3
Maximálny dojazd 490 Km 160 km 250 km 250 km
Rýchlonabíjanie (400 V) 70 minút 30 minút 30 minút 30 minút
Klasické nabíjanie (220 V) 8 hodín 11 hodín 13 hodín 14 hodín
Kapacita batérie 75 kWh 18,7 kWh 30 kWh 33 kWh
Výkon 386 kW 60 kW 80 kW 125 kW
Hmotnosť 2 108 kg 1 214 kg 1 505 kg 1 195 kg
Krútiaci moment 498 Nm 210 Nm 224 Nm 250 Nm
Spotreba (na 100 km) 19,13 kWh 11,7 kWh 15 kWh 12,6 kWh
Maximálna rýchlosť 225 km/h 130 km/h 144 km/h 150 km/h
Objem batožinového priestoru 894 l 251 l 370 l 260 l
Cena 107 500 € 24 500 € 30 300 € 36 600 €

Alza ako prvý e-shop ponúka predaj elektromobilov

Vyššia cena vás napriek tomu neodrádza a uvažujete o tom, že si elektromobil zaobstaráte? V tom prípade máme pre vás dobrú správu, pretože Alza.sk sa chystá v najbližšej dobe spustiť on-line predaj elektromobilov. Áno, počujete správne. Práve teraz meníme dejiny a štartujeme revolučný spôsob predaja automobilov výhradne cez internet. TESLA Model X 100D spoločne s motorkami Zero budeme mať vystavené v showroome Alza.sk v Bratislave – centrála od 27. 9. 2017. Tak sa príďte pozrieť.

Tesla v showroome v Holešoviciach

Ako je to s dotáciami na elektromobily?

Rozšíreniu elektromobilov na Slovensku by mala pomôcť dotácia, ktorá sa na ich kúpu viaže v mnohých európskych krajinách. Na dotáciu bolo vyčlenených viac ako 5,2 milióna eur. Dotačný program sa začal v novembri 2016 a potrvá až do konca tohto roka. Príspevok na nový automobil len s elektrickým pohonom je 5 000 eur. Ak by predaj dotovaných áut na Slovensku pokračoval doterajšom tempom, rozpočet projektu by nebol vyčerpaný. O príspevok na nákup elektrických vozidiel môžu na Slovensku žiadať nielen občania, ale aj podnikatelia a samospráva.

Elektromobil Škoda Vison E

Okrem samotných elektromobilov je nutné rozširovať aj elektrické siete

Elektromobily ponúkajú množstvo výhod a úspor, ale fakt týkajúci sa nepripravenosti elektrorozvodnej siete, ako u nás, tak vo svete býva často zanedbávaný. Zaujímavý je napríklad výpočet britskej spoločnosti Green Alliance, zaoberajúcej sa ochranou a zlepšovaním životného prostredia vo Veľkej Británii. Podľa nej pripojenie do zásuvky iba šiestich elektromobilov s vysokým odberom elektrickej energie v rovnakom mieste môže spôsobiť preťaženie siete a jej následný výpadok.

Green Alliance ďalej varuje, že nemožno podporovať len samotné elektromobily, ale je nutné začať aktívne rozširovať elektrorozvodnú sieť. Riešenie by mohli poskytnúť príspevky na vybudovanie vysokokapacitných akumulátorov pre domácnosti, ktoré ako jedna z prvých predstavila dcérska spoločnosť Tesla Motors – Tesla Energy. Tie majú až 2× väčší výkon ako obyčajná domáca zásuvka a napríklad plné nabitie vozidla Volkswagen e-Up! zvládnu pod 4 hodiny. Tesla Powerwall sa dajú zaobstarať od 3 000 dolárov, teda cca 2 700 eur.

Elektromobily budú stále rozšírenejšie

Hlavnými faktormi, ktoré stále bránia v masovom rozšírení elektromobilov, sú teda vysoká obstarávacia cena, malý počet dobíjacích staníc v SR aj malá kapacita batérií v lacnejších vozidlách. Našťastie vývoj vo všetkých oblastiach neustále prebieha a odborníci napríklad očakávajú, že dojazd by v budúcnosti mohol byť takmer rovnaký, ako v prípade automobilov so spaľovacím motorom. Veľký boom tiež zažíva rýchlonabíjanie, keď niektoré elektromobily môžete nabiť na 80 % už za 20 minút.

Zdroj: Elektromobily (VŠETKO, ČO CHCETE VEDIEŤ) | Alza.sk

TEST: Mitsubishi Outlander PHEV – až 50 kilometrov bez benzínu

13.01.2017

50 kilometrov bez benzínu

Takmer dvojtonový hybridný crossover má podľa papierových údajov spotrebu menšiu ako dva litre.

Jeho celé meno, ku ktorému patrí označenie 2.0 MIVEC 4WD dáva šancu pochybovať. Ale prekvapím vás – hybridné plug-in auto to dokáže. PHEV totiž znamená „plug-in hybrid electric vehicle“ a výrobca deklaruje až 52 kilometrov len na elektrickú energiu a priemernú spotrebu 1,8 litra. Ak polovicu zo 100 kilometrov prejde na baterky, dokáže tých zvyšných 50 štatisticky dokáže zvládnuť aj pod dva litre?

Odpoveď je teda taká šalamúnska: aj áno, aj nie… Vtip je „len“ v tom, že iba ak poctivo dobíjate baterky a nejazdíte na dlhé trasy, kde si zásobu elektrickej energie miniete skôr, môžete sa k tejto hodnote teoreticky dostať. Inak platíte za technológiu budúcnosti (dnes už prakticky súčasnosti) v aute z minulosti.

Mitsubishi Outlander sa vyrába od roku 2001 a tretiu generáciu sme už skúšali v roku 2014. Všetko čo sme o aute napísali v predchádzajúcom teste platí. Samozrejme s aktuálnymi zmenami, ktoré uvádzame teraz. Lebo najnovšia generácia japonského SUV podstúpila v roku 2015 modernizáciu. Po „feši“ facelifte, ktorý Outlander absolvoval v štýle ostatných modelov Mitsubishi, sa zaradil medzi vzhľadovo zaujímavé autá. Na „vnútornostiach“ hybridného Plug-in hybridu sa toho až tak veľa nezmenilo, iba sa rozvíja to, čo Mitsubishi priviedlo na svet už dávnejšie. V marci 2016 sa Outlander PHEV stal svetovo druhým najlepšie predávaným plug-in hybridom hneď za Chevroletom Volt. Najlepšie sa samozrejme predáva v Japonsku. V Európe predaj ťahá hlavne Veľká Británia a Holandsko.

Pre nás netradičný dizajn

Netradičné tvary karosérie jasne ukazujú, že tento model nebol stvorený pre Európu. Navyše japonský dizajn nie je pre každého, hlavne pre oko Európana. No nedávno facelift modelu výrazne pomohol, až máte pocit, že je to ďalšia generácia. Mitsubishi má túžbu dizajnérov uspieť za oceánom. Bohato chrómovaná maska chladiča v kombinácii s lesklou čiernou „piano black“ nápadne pripomína americké pickupy a SUV. V spätnom zrkadle áut pred vami vzbudíte rešpekt bez vynucovania a potvrdzuje to, že sa predok auta vydaril. Keď sa chrómovaný „čumák“ niekde objaví, vzbudí pozornosť.

V Mitsubishi sa rozhodli odlíšiť hybridný Outlander od klasického. Kým verzia so spaľovacím motorom je orientovaná do terénu, variant PHEV má navodzovať pocit luxusu vozidiel prémiových tried. Tuším sa mu to darí. Vzhľadu totiž pomohli aj čierne osemnásťpalcové kolesá z ľahkých zliatin s rozmerom pneumatík 225/55 R18. Celkom by sa tam vošli ešte o palce väčšie, ale to by už bolo na úkor komfortu jazdy.

Vo vnútri tiež „Amerika“

Nakuknime ešte do interiéru. Bude to rýchly pohľad, Až tak veľa sa nezmenilo. Na prvý pohľad vidno úplne rovnakú palubnú dosku s rovnakou stredovou konzolou ako má konvenčný Outlander. Odlišný je však nový vyhrievaný volant a tiež volič prevodovky. Prístrojový štít neponúkne normálne otáčkomer, ale displej, ktorý ukáže, čo práve robí pohonné ústrojenstvo. Ako aj v iných plug-in hybridoch sa z neho dozviete, či práve nabíjate batérie rekuperáciou, idete úsporne, alebo používate všetku dostupnú silu.

Vodič má pred sebou upravenú grafiku na páke voliča a decentné zmeny aj na tlačidlách jazdných režimov a v ich okolí na stredovom tuneli. Kvalita v kabíne je všeobecne dobrá, aj ergonómia. Problémy sa objavia v príliš rozvetvenom menu dotykového ovládania na displeji, našťastie doplnené o niekoľko základných tlačidiel pre ľahšiu orientáciu. Potešia mohutné sedadlá, ktoré sa dajú, aj keď nie elektricky, nastaviť rýchlo do požadovanej pozície.

Technika a výbava: Je pod kapotou vôbec motor?

Väčšina súčasných hybridov využíva elektromotory a dodatočne inštalované akumulátory primárne k zníženiu papierovej spotreby. Prídu vhod aj ako výkonový doping pre východiskový spaľovací motor. Mitsubishi Outlander PHEV je však z trochu iného cesta. Je to čisto technicky vzaté elektromobil poháňaný dvojicou elektromotorov, ktorý dostal do vienka relatívne malú zostavu lítium-iónových bateriek s kapacitou iba 12 kWh. Prerátané na spotrebu je to asi tak 4,6 litra benzínu. Preto je na palube aj atmosférický zážihový štvorvalec.

Mitsubishi Outlander má pre mňa jedno z najzaujímavejších riešení pohonu vôbec. Medzi hlavné súčasti hnacieho ústrojenstva patrí predný a zadný elektromotor, generátor energie, batérie a spaľovací motor. Vďaka trom motorom je k dispozícii trvalý pohon 4 × 4 bez použitia pozdĺžneho spojovacieho hnacieho hriadeľa (teda kardanu), chýba aj prevodovka. Absencia hriadeľa aj prevodovky znamená nižšie mechanické straty. Ako teda celý systém funguje?

Dvojlitrový motor funguje v spolupráci s generátorom ako elektrocentrála, ak napríklad nemáte po ruke práve elektrickú zásuvku. Navyše vie pomáhať prednému elektromotora s pohonom kolies cez jednostupňovú prevodovku. Auto sa v závislosti na okolitých podmienkach pohybuje troma spôsobmi. Keď sú nabité batérie, vozidlo prioritne využíva elektrickú energiu a do práce sa dajú elektromotory vpredu a vzadu. Kolesá poháňajú cez redukčné prevody a diferenciál. V takom prípade máte k dispozícii teoreticky výkon až 120 kW, každý z elektromotorov totiž pridá ruku k dielu svojich maximálne 60.

Keď sa ale elektrina minie, systém naštartuje benzínový motor, ktorý začne pomocou 70 kW generátora vyrábať energiu. Funguje zároveň aj ako štartér pre spaľovací motor. Otáčky spaľovacieho motora sa pohybujú väčšinu času od 1 100 do 1 700 otáčok za minútu podľa požadovaného výkonu. Takzvaný sériový hybridný mód vie z oboch elektromotorov, ktoré majú za chrbtom generátor a nie sú obmedzené 80 článkovou batériou s napätím 300 voltov umiestnenou pod podlahou medzi nápravami, vygenerovať dohromady výkon až 120 kilowattov.

Mitsubishi má však v zálohe ešte jednu „fintu“. Spaľovací motor vie predné kolesá poháňať priamo cez spojku a elektromotory dodávajú výkon na predné aj zadné kolesá súčasne. V jednej chvíli vás tak môžu poháňať až tri motory naraz. Mitsubishi tento spôsob nazýva paralelný hybridný mód a celkový výkon sústavy činí slušných 149 kW (203 k), pričom 89 kW (121 k) zvládne spaľovací motor a ďalších 60 kW (82 k) pridá dvojica elektromotorov. Pri jazde si výber pohonu samozrejme vyberá sám počítač a vy nad výberom pohonu nemáte kontrolu. V praxi to potom vytvára zaujímavý pocit spaľovacieho motora, ktorý pracuje niekde hlboko v útrobách automobilu a pomaly stráca svoj údel.

Hoci má Outladner PHEV konštrukciu komplikovanú ako atómová elektráreň, ovláda sa úplne ľahko a všetko za vás vybaví elektronika. Vie ale naozaj jazdiť tak úsporne, ako deklaruje Mitsubishi? Po facelifte by to malo byť dokonca o deci menej, ako v staršej verzii. Ako to dokáže – ťažké auto a pritom so spotrebou ako skúter?

Pohon

Štarty a rozjazdy hybridného Outlandera sú takmer nehlučné, ak si odmyslíme vzdialené a dobre utlmené bzučanie. Pripomína to nápadne električku. K tomu už len valivý hluk od pneumatík. Ak máte batérie nabité, jazdný rádius je podľa štýlu jazdy od 20 do necelých 50 km. Ale aj 120 km/h. Dvojliter s 89 kW (121 koňmi) sa zapojí do debaty až neskôr – alebo pri razantnejším zošliapnutí plynu. To vtedy, keď 2×60 kW elektrického pohonu dochádza dych. Akceleráciu vtedy podporujú všetci za jedného s udávaným kombinovaným výkonom 149 kW, čo je trocha nad 200 koní a je to pôsobivá skúsenosť. Jedenásť sekúnd na dosiahnutie stovky nevyzerá papierovo nijak extra, no kontinuálny záťah bez prerušenia a pomerne rýchla reakcia elektromotorov robia v praxi lepší dojem, ako by sa mohlo na prvý pohľad zdať.

V tom momente sa nadpriemerný akustický komfort vytratí ako para nad hrncom. Intenzita zvuku štvorvalca síce neprekračuje únosnú hranicu, ale s ohľadom na chýbajúce prevodové stupne je monotónnz a trocha otravuje ako pri autách s variátorom Stačí ubranie plynu a to vráti pohodu na palube do normálu. Motor sporadicky naskočí, aby dobíjal „na pozadí“ jazdy na baterky, prípadne občas potiahne spolu s elektrickou silou, väčšinu času o ňom ale neviete. Dovtedy, kým nevyrazíte za mesto – na diaľnici sa začne dvojlitrový agregát opäť pripomínať, keď potrebujete pridať vo vyšších rýchlostiach a baterkám začne dochádzať šťava. Elektronika sa snaží rozdeľovať každý kilowatt medzi generátor a predné kolesá.

Spotreba

Môžem potvrdiť, že hybridný Outlander podľa tachometra skutočne viac než na 177 km/h nevyduríte. A navyše nie je za všetkých okolností úsporný. Ak dáte „tehlu na pedál“ asi na 20 minút až pol hodinu a totálne vyžmýkate akumulátory, verte, či nie, na krásne reči o úspornom aut zabudnite! Hodnota okolo 18 litrov na stovku v tomto prípade ešte nie je extrém. To však v porovnaní s inými benzínovými crossovermi s podobnou hmotnosťou nie je nič nečakané. Háčik je v tom, že sa u Mitsubishi začne pomerne skoro prejavovať relatívne malá 45-litrový nádrž. Ak ešte chcete počas jazdy aj dobíjať baterky, aby ste si našetrili elektrickú energiu pre budúcu jazdu do mesta, spotreba skutočne vyskočí aj pekne nad 10 – 11 litrov. Nechajte to radšej na elektrickú zásuvku. Buď z klasického rozvodu 230 V – to je záležitosť tak na 5 hodín. Cez konektor Mennekes asi 3 hodiny a v rýchlonabíjaní cez CHAdeMO je na 80 % kapacity nabitý za pol hodiny.

Vtedy ukáže Mitsubishi svoju silnú stránku a potom je možné aj v meste jazdiť bez významnejšieho obmedzovania za zhruba 5 až 5,6 litrov podľa toho, ako veľmi rýchlo chcete odchádzať pri štartoch z križovatiek. Mimo mesta sa dá s veľmi citlivou pravou nohou spadnúť až na 3 l/100 km, no so skromnými zásobami voľných elektrónov v lítiovom zásobníku, teda v baterke, však eko-jazda nepotrvá dlho.

Jazda

Auto hlásajúce predovšetkým nízku spotrebu nebude nikoho urážať, ak sa na okreskách neudrží za rýchlym športiakom. Ale vie prekvapiť a ukazuje, že úplne bezzubé nie je. Podvozok je skôr tuhší a všetky nerovnosti zamaskovať nezvláda, ani na zlom povrchu ale neposkakuje, nebúcha a v zákrutách má napriek vysokej hmotnosti slušnú priľnavosť. Tlmiče so stabilizátormi dobre potláčajú náklony. Ideálne vyváženie medzi nápravami nečakajte, napriek tomu zostáva PHEV dlho neutrálne a až na hrubé zaobchádzanie odpovie jemnou nedotáčavosťou.

Záver

Mitsubishi Outlander PHEV sa svojou konštrukciou a usporiadaním pohonu celkom výrazne odlišuje od zvyšku áut, ktorým hovoríme hybridy. Vytŕča aj z radu typických elektromobilov. Naráža na limity súčasných technológií s danou efektivitou. To sa dá meniť postupne pomaly a nemožno ju vylepšovať skokovo, ako si účelovo alebo naivne predstavujú zeleno orientovaní a naladení politici, úradníci a aktivisti.

Hybridný Outlander vyjde na 45 500 € a to je skoro dvojnásobok základného modelu. Pritom bez zásuvky budete jazdiť s porovnateľnými, alebo dokonca vyššími prevádzkovými nákladmi ako s benzínovými, či naftovými modelmi. Zmysel to autá má – len ho musíte pravidelne „nadájať“ z elektrickej zásuvky. Treba si však uvedomiť, že jazdiť „skoro za nič“ dokáže iba na vzdialenosť niekoľkých desiatok kilometrov, napríklad v meste. Otázne je, či práve tam treba takéto veľké SUV, alebo vždy nájdete voľnú elektrickú zásuvku…

Rozdiel v cene sa oplatí približne po najazdení 75 000 kilometrov. Vlastne teraz oveľa skôr, lebo na uato môžete získať až 3 000 € štátnu dotáciu. Takže ak nemáte do práce ďaleko a zvládnete tých 50 kilometrov tam aj späť, odvďačí sa nízkou spotrebou. Treba k nej prirátať aj spotrebovanú elektrinu, ktorú rozumne dobijete do akumulátora cez noc. Alebo ešte na pár miestach zadarmo. Len ktovie dokedy. No otázkou je, či práve takéto veľké auto treba na jazdy do mesta a v ňom, hoci paradoxne práve tam ukáže svoje prednosti a nízku spotrebu.

Technické údaje

Model: Mitsubishi Outlander Plug-in Hybrid
Počet valcov: 4
Zdvihový objem motora (cm3): 1998
Výkon (kW/ot.):  89/4500
Krútiaci moment (Nm/ot.): 190/4500
elektromotor:
Výkon (kW):  2 x 60
Krútiaci moment (Nm): 137 vpredu, 195 vzadu
Maximálny systémový výkon (kW/ot.) 149/3600
Celkový krútiaci moment (Nm/ot.): 400/4200
Poháňaná náprava predná aj zadná
Maximálna rýchlosť (km/h): 170
Zrýchlenie 0 – 100 km/h (s): 11
Spotreba plné nabite/mininmálne/priemer (l/100 km): 0/5,5/1,8
Spotreba elektrickej energie (Wh/km): 134
Dĺžka/šírka/výška (mm): 4695/1800/1710
Rázvor náprav (mm): 2670
Objem batožinového priestoru (l): 451(486)/1590
Objrem palivovej nádrže (l): 45
Kapacita batérií (kWh): 12
Pohotovostná hmotnosť (kg): 1920
Užitočná hmotnosť (kg): 420
Rozmer pneumatík: 225/55 R18
Základná cenníková cena modelu: 45 500 €
Základná akciová cena modelu:
Základná cena verzie:
Cena testovaného vozidla: 46 565 €

Zdroj: TEST: Mitsubishi Outlander PHEV – až 50 kilometrov bez benzínu | Podkapotou.sk

Elektromobil info – všetko čo potrebujete vedieť o elektromobiloch

elekromobil

ELEKTROMOBIL INFO – VŠETKO ČO POTREBUJETE VEDIEŤ O ELEKTROMOBILOCH

Elektromobil – definícia

Vo všeobecnosti sa pojmom elektromobil označujú dopravné prostriedky, ktorých pohonnou jednotkou je
elektrický motor (elektromotor). Môže sa tak jednať o elektrické automobily – elektromobily, elektrobicykle (elektrické bicykle, e-bike), elektrické motorky či skútre, elektrické lode a lietadlá, ale aj elektrické vlaky, „električky“, metro, elektrické autobusy a trolejbusy či dokonca elektrické kolobežky. Taktiež sú zaužívané aj anglické skratky ako EV (Electric Vehicle – elektrické vozidlo) alebo BEV (Battery Electric Vehicle – batériové elektrické vozidlo). U nás sa však najbežnejšie používa na označenie elektrického automobilu, ktorý si v rámci tejto stránky podrobne predstavíme.

KAPITOLY 

 

Elektrický automobil

Elektrický automobil (elektromobil) je automobil, ktorý je poháňaný výlučne elektrickou energiou. Tú čerpá z akumulátora (batérie) integrovaného do vozidla, ktorý je nutné nabíjať z externého zdrojanabíjacej stanice alebo domácej zásuvky. Časť energie dokáže získať aj tzv. rekuperáciou, čo je premena kinetickej (pohybovej) energie elektromobilu na energiu elektrickú. Deje sa tak predovšetkým pri spomaľovaní vozidla a brzdení.

Pohonnou jednotkou elektromobilu je elektrický motor (elektromotor). Jeho výhodou je konštrukčná nenáročnosť a účinnosť, ktorá je v priemere 3-krát vyššia (90 %) ako u spaľovacích motorov (25 – 34 %). Celková účinnosť je však ovplyvnená aj účinnosťou batériových článkov a nabíjania.

elektromobil tesla model s bateria motory
Základná schéma elektromobilu Tesla Model S s pohonom oboch náprav (4×4) a dvojitým zadným elektromotorom. Zdroj: Tesla

Použitie elektromotora so sebou nesie konštrukčné výhody. Vďaka rozmerom (veľkosť melónu) ho je možné osadiť priamo na nápravu elektromobilu. Na pohon 4×4 nie je nutný kardanový hriadeľ. Na obe nápravy sa osadia nezávisle elektromotory, ktorých súčinnosť má na starosti elektronika. Pri elektromobiloch so zadným pohonom (napr. Tesla), absentuje v prednej časti vozidla motor. Tým sa významným spôsobom zväčšuje deformačná zóna pri čelnom náraze, čo má výrazný vplyv na bezpečnosť. Takéto elektromobily môžu mať aj dva batožinové priestory, a to vpredu aj vzadu.

Čo sa týka umiestnenia batérií, tie sa v moderných elektromobiloch montujú do podlahy, takže nezaberajú žiadnu úžitkovú plochu. Vďaka tomu dochádza k zníženiu ťažiska, čo má veľký vplyv na stabilitu a bezpečnosť.

 

História elektromobilov

História elektromobilov siaha už do prvej polovice 19. storočiaPrvý zdokumentovaný elektromobil pochádza z holandského Groningenu. Navrhol ho profesor Sibrandus Stratingh a v roku 1835 bol skonštruovaný jeho asistentom Christopherom Beckerom.

Elektromobil Sibrandusa Stratingh a Christopher Becker z roku 1835
Elektromobil profesora Sibrandusa Stratingha z roku 1835. Zdroj: youbioit.com

 

Ďalšími priekopníkmi v oblasti elektromobility boli Škót Robert Anderson, ktorý skonštruoval elektromobil v roku 1839 a Sir David Salomon (1870). Prvý prakticky použiteľný elektromobil však postavil až Thomas Parker, a to v roku 1884.

elektromobil thomas parker 1884
Prvý elektromobil použiteľný na prepravu osôb od Thomasa Parkera z roku 1884. Foto: voľné dielo

 

O rok neskôr sa podarilo zostrojiť elektromobil aj českému inžinierovi, ktorým bol František Křižík. Bol poháňaný jednosmerným elektromotorom s výkonom 3,6 kW. Jeho batériu tvorilo 42 olovených článkov. V roku 1888 skonštruoval Angličan Magnus Volk prvú praktickú „trojkolku“ na elektrický pohon.

elektromobil magnus volk 1888
Elektrická trojkolka Magnusa Volka z roku 1888. Foto: voľné dielo

 

V roku 1898 postavil Ferdinand Porsche vôbec svoj prvý automobil. Jednalo sa o elektromobil s označením Porsche P1. Elektrický pohon vážil iba 130 kg a dosahoval výkon 3 koní, pričom krátkodobo to bolo aj 5 koní. Elektromobil dosahoval maximálnu rýchlosť 35 km/h a mal dojazd 80 km.

elektromobil porsche p1
Prvý automobil Ferdinanda Porsche-ho z roku 1898. Bol to elektromobil s označením P1 (voľné dielo)

 

Elektromobil Belgičana Camille Jenatzy-ho v tvare „cigary“ s názvom La Jamais Contente (večne nespokojná), dosiahol v roku 1899 významný míľnik. Stal sa prvým automobilom, ktorý prekonal rýchlosť 100 km/h.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6 rokov na to sa podarili Louisovi Kriégerovi uskutočniť na svojom elektromobile prvú jazdu na dlhšiu trasu bez nabíjania. A to na trase Paríž – Trouville (cca 145 km).

krieger electric brougham 1904
Elektromobil Krieger Electric Brougham z roku 1904. CC 3.0

 

Dominancia elektromobilov na začiatku 20. storočia

Začiatkom 20. storočia už brázdili ulice aj spaľovacie a parné automobily. Napriek tomu boli elektromobily najpredávanejším typom vozidiel. Výrazný podiel mala na tom napríklad spoločnosť Holtzer Cabot Electric. Elektromobily tej doby mali množstvo výhod oproti svojej konkurencii. Netrpeli na vibrácie, neboli hlučné, nemali problémy s radením a nemuseli sa štartovať kľukou (spaľovacie autá), ani nemali dlhú nábehovú dobu ako parné automobily (v chladnom počasí trvalo aj 45 minút, kým boli schopné jazdy). Vtedajšie elektromobily dosahovali aj najvyššie rýchlosti (priemerne 32 km/h) a samozrejme neprodukovali žiadne splodiny.

 

Udalosti, ktoré uvrhli elektromobily do „nemilosti“

  • V USA sa začali budovať diaľničné cesty, dôsledkom čoho vzrástli nároky na dojazd vozidiel.
  • Objav veľkého náleziska ropy v Texase spôsobil prudký pokles cien benzínu.
  • Vynález štartéra v roku 1912 zmazal ďalšiu nevýhodu spaľovacích automobilov – nekomfortné štartovanie kľukou.
  • Spustenie hromadnej výroby vozidiel Ford, ktorým sa výrazne znížila cena spaľovacích vozidiel. Bežný benzínový automobil bolo možné kúpiť za cca 650 dolárov, kým ekvivalentný elektromobil stál 1 750 dolárov.

Rok 1913 určil smerovanie v automobilovom priemysleV USA, ktoré boli automobilovou veľmocou, sa predalo vyše 180 000 benzínových vozidiel Ford Model T. Elektromobily, po svojom najsilnejšom roku (1912), „padli“ na 6 000 predaných kusov. Elektromobily tak na niekoľko desiatok rokov upadli do zabudnutia. Celkovo bolo v USA do roku 1915 vyrobených 35 000 elektromobilov.

Náznak reinkarnácie sa odohral v 70. rokoch, kedy arabské ropné embargo vyhnalo ceny ropy na rekordné hodnoty. Štáty začali v tom období dotovať vývoj elektromobilov, avšak k žiadny z nich sa výraznejšou mierou nedokázal presadiť. A keď klesli ceny benzínu, všetko sa vrátilo do „emisného“ normálu.

Následne sme si museli počkať vyše 30 rokov na malú renesanciu automobilov na elektrický pohon, ktorú odštartovala automobilka Tesla Motors. Tej sa podarilo zmeniť pohľad na elektromobily, ktoré boli do tej doby považované za ohavné krabice, nepoužiteľné v bežnom živote….

 

Mýty o elektromobiloch

myty o elektromobiloch
Zdroj: MythBusters

Nie je tomu tak dávno, čo sa väčšina elektromobilov považovala za nevzhľadné škatule s dojazdom autíčka na diaľkové ovládanie a dynamickými vlastnosťami elektrickej kolobežky. Tak ako väčšina vecí, aj elektromobily mali vo svojich (druhých) začiatkoch veľmi ďaleko od dokonalosti. Mnoho ľudí si však túto predstavu zafixovalo a šíri ju ďalej. A to aj napriek tomu, že o aktuálnom stave v oblasti elektromobility nemajú absolútne žiadny prehľad. V tejto časti sa preto budeme snažiť vyvrátiť mýty o elektromobiloch, s ktorými sa stretávame najčastejšie.

 

Elektromobily majú malý dojazd

Mali! Súčasné elektromobily nižšej strednej triedy majú reálny dojazd nad 200 km. Táto hodnota určite postačuje veľkej väčšine vodičov. Takýto elektromobil vás bez problémov odvezie do práce, deti do školy, odbavíte ním nákupy či kratšie výlety.

Na dlhšie cesty môžete využiť dostatočnú sieť nabíjacích staníc alebo siahnuť po elektromobiloch Tesla, ktorých skutočný dojazd sa pohybuje od 380 do 540 km, v závislosti od modelu a jeho verzie. Výbornou správou je, že vysoký dojazd už nebude len doménou drahých elektromobilov vyššej triedy. Najnovší prírastok do rodiny elektromobilov nižšej strednej triedy, Chevrolet Bolt, dosiahol v redakčných testoch dojazd  423 až 467 km. Jeho európska verzia v podobe Opel Ampera-e, príde do Európy už v roku 2017, rovnako ako najočakávanejší automobil histórie, Tesla Model 3 (345 km). Viac informácií o dojazde elektromobilov nájdete v sekcii dojazd elektromobilov.

 

Elektromobily majú zlú jazdnú dynamiku

Práve naopak! A to vďaka krútiacemu momentu, ktorý je dostupný už od prvej otáčky. Dôsledkom toho majú elektromobily lepšiu akceleráciu a tzv. pružnosť ako porovnateľné automobily so spaľovacím motorom. A to má vplyv aj na bezpečnosť, predovšetkým pri výjazdoch na bočné cesty a pri predbiehaní.

Maximálna rýchlosť je síce kvôli optimalizácii dojazdu obmedzená na hodnoty, ktoré sú nižšie ako v prípade spaľovacích automobilov, avšak tie vás určite nebudú nijako limitovať v bežnej premávke. V sekcii „jazdná dynamika elektromobilov“ nájdete podrobnejšie informácie, a to vrátane konkrétneho porovnania jazdných vlastností elektrických a spaľovacích vozidiel.

 

Chýba nabíjacia infraštruktúra

Nabíjacia infraštruktúra pre elektromobily je na Slovensku a vo veľkej časti Európy na veľmi dobrej úrovni. Našu nabíjaciu infraštruktúru nám závidia napríklad aj Nemci. Rýchlonabíjacie stanice sú k dispozícii zhruba každých 60 km. Medzery medzi týmito stanicami navyše vypĺňajú klasické nabíjačky s výkonom okolo 22 kW. Cestovanie po Slovensku nie je teda žiadny problém. A rozhodne nie je problémom ani cestovanie na dlhé vzdialenosti na západ Európy či do okolitých krajín, s výnimkou Ukrajiny.

Za dobrú sieť nabíjacích staníc vďačíme predovšetkým spoločnostiam GreenWay, Tesla, Nissan či elektrárňam a prevádzkovateľom obchodných centier, hotelov a reštaurácií. Podrobné informácie o nabíjacej infraštruktúre nájdete na našom partnerskom webe v článku Nabíjacie stanice na Slovensku, v Česku a Európe.

Sieť nabíjacích staníc sa bude samozrejme ešte rozrastať. Napríklad Tesla zverejnila svoj plán budovania svojich nabíjačiek Supercharger, v ktorom nezabudla ani na náš región.

 

Elektromobil sa nabíja príliš dlho

Doba nabíjania elektromobilov je relatívna. Keď nabíjate svoj elektromobil cez noc doma, 7 hodinové nabíjanie nie je žiadny problém. Avšak na výlete či služobnej ceste potrebujete nabíjať čo najrýchlejšie. Preto tomu výrobcovia elektromobilov a nabíjacích staníc prispôsobili svoje produkty.

Pri nabíjaní na rýchlonabíjačkách Tesla Supercharger získate napríklad za 20 minút dojazd 270 km. Na Slovensku bežnejšie rýchlonabíjačky CHAdeMO, predĺžia váš dojazd o 120 km za menej ako pol hodinu. To však nie všetko. V roku 2017 prichádzajú na trh nabíjacie stanice ChargePoint Express Plus, ktoré sú takmer 3-krát výkonnejšie ako Supercharger. Nabíjajú rýchlosťou 11 km za minútu, tzn. zisk 110 km dojazdu za 10 minút.

Podobne výkonné nabíjačky vyvíjajú rôzne spoločnosti či aliancie, medzi inými aj zoskupenie automobiliek BMW, Audi, Porsche, Mercedes a Ford. Navyše Elon Musk (Tesla) vyhlásil, že tieto supervýkonné nabíjačky sú len detskými hračkami, v porovnaní s pripravovanou 3. generáciou Tesla Supercharger.

 

Batériu elektromobilu treba často meniť

V tomto kontexte je v rámci batérie elektromobilu podstatná jej záruka a strata kapacity. Našťastie už ani jedno, ani druhé, nie je pri súčasných elektromobiloch problém. Napríklad Nissan ponúka na batériu svojho bestselleru Leaf 8-ročnú záruku alebo 160 000 km. Záruka sa vzťahuje aj na pokles kapacity o viac ako 25 % do 5 rokov alebo 100 000 km. A to sa jedná o elektromobil, ktorý je na trhu už 7 rokov, takže jeho batérie nedosahujú technologickej úrovne tých najvyspelejších najmodernejších elektromobilov. Hyundai ponúka na batériu svojho vozidla Ionic Electric 8-ročnú záruku alebo 200 000 najazdených km.

Tesla ponúka na batérie svojich elektromobilov taktiež 8-ročnú záruku, navyše bez obmedzenia. Prax ukázala, že po prvých 100 000 km klesne kapacita batérií jej elektromobilov o 5 %. Každých ďalších 50 000 km dochádza potom k strate už len 1 % kapacity.

 

Elektromobily nie sú ekologickejšie ako spaľovacie automobily

Novodobým mýtom v oblasti elektromobility je tvrdenie, že elektromobily nemajú priaznivejšiu ekologickú bilanciu, ako automobily so spaľovacím motorom. Poukazuje sa pritom na hlavne neekologickú výrobu elektrickej energie, ktorá je „palivom“ pre elektromobily. Taktiež sa spomína väčšia ekologická stopa, ktorú zanechávajú pri svojej výrobe.

Aj keby sa všetká elektrina vyrábala neekologicky, čo nie je vôbec pravda, tak elektromobily v rámci svojej prevádzky už neprodukujú ďalšie emisie. Záverom mnohých štúdií na túto tému je fakt, že elektromobil začína byť ekologickejší ako bežný „spaľovák“, v priemere už po 3 000 km. A to s ohľadom na jeho produkciu, aj výrobu elektriny. Keďže táto problematika je ďaleko obšírnejšia, venujeme sa jej v samostatnej sekcii Je elektromobil skutočne ekologický?.

 

Elektromobily sú drahé

Obstarávacia cena elektromobilu je vo všeobecnosti výrazne vyššia, ako v prípade porovnateľného spaľovacieho automobilu. Avšak netreba zabúdať na prevádzkové náklady elektromobilov, ktoré sú na druhú stranu oveľa nižšie. A to vďaka cene za elektrickú energiu v porovnaní s cenami benzínu a nafty, ako aj servisným nákladom, keďže pohonná jednotka elektromobilov je konštrukčne oveľa jednoduchšia a nepotrebuje takú náročnú údržbu ako spaľovacie motory s prevodovkou.

Taktiež treba pripomenúť, že slovenská vláda poskytuje na elektromobily 5 000 € dotáciu. Elektromobily sú taktiež oslobodené od registračného poplatku a vzťahuje sa na ne najnižšia sadzba povinného zmluvného poistenia.

Vo všeobecnosti sa dá povedať, že po započítaní prevádzkových nákladov a dotácií, sú elektromobily minimálne rovnako drahé ako porovnateľné spaľovacie automobily. To však platí až po najazdení desiatok tisícov kilometrov. Viac informácií o prevádzkových nákladoch elektromobilov nájdete v sekcii Elektromobil a prevádzkové náklady.

 

Elektrická sieť nie je pripravená na nápor elektromobilov

Najnovšia štúdia na túto tému hovorí, že keby sa zo dňa na deň všetky automobily v Európe pretransformovali na elektromobily, stúpla by spotreba elektriny o 30 %. To sa ale samozrejme nestane. Podľa rôznych štúdií to bude trvať 25 až 33 rokov, takže máme dostatok času. A keďže je výroba elektriny čím ďalej efektívnejšia a rovnako sú efektívnejšie aj spotrebiče, ktoré túto energiu spotrebúvajú, možno nebude nutné navýšiť kapacitu ani o 1 %. A kto vie, ako bude vyzerať oblasť energetiky za 25 rokov. Možno budeme fungovať na niečom podobnom, ako je údajný Teslov generátor kvantovej energie, ktorý funguje v podstate ako Perpetuum mobile. 🙂

Treba taktiež povedať, že elektromobily sa nabíjajú v drvivej väčšine v noci, kedy je odber energie minimálny. Takže naopak, elektromobily by pomohli vyrovnať pomyselnú energetickú krivku, čím by vyriešili starosť energetických spoločností, ktoré majú problém s ukladaním nadbytočnej energie počas nočného „kľudu“. Táto energia by sa jednoducho ukladala do batérií elektromobilov. Tým by tieto spoločnosti ušetrili, takže elektromobily by sa mohli teoreticky postarať o zníženie cien elektriny.

 

 

Výhody elektromobilov

V nasledujúcich riadkoch si popíšeme výhody elektromobil, a to predovšetkým v porovnaní s klasickými spaľovacími automobilmi. Na začiatok ale uvedieme výhody vyplývajúce z vlastníctva elektromobilu.

1. Priame výhody pre majiteľov elektromobilov:

  • Štátna dotácia na elektromobil vo výške 5 000 €.
  • Najnižšia sadzba za registráciu vozidla (33 €), a to bez ohľadu na výkon elektromobilu.
  • Najnižšia sadzba PZP, ktorá sa vzťahuje na bežné vozidlá s objemom do 1000 cm³.
  • Rôzne daňové úľavy – zákon s daňovými úľavami pre majiteľov elektromobilov je v štádiu prípravy. Napríklad pri využívaní firemného elektromobilu zamestnancom na služobné aj súkromné účely, sa mu nebude strhávať daň to mzdy. Elektromobily by mali spadať aj do osobitnej kategórie odpisovania.
  • Využívanie špeciálneho jazdného pruhu – v mnohých mestách po celom svete môžu majitelia elektromobilov využívať špeciálne jazdné pruhy. Napríklad jazdné pruhy pre MHD. O sprístupnení týchto pruhov pre elektromobily sa uvažuje aj na Slovensku.
  • Povolený vstup do tzv. bezemisných či nízkoemisných zón – po celom svete vznikajú takéto zóny, ktorých cieľom je zníženie smogu. Predovšetkým vo veľkých, husto obývaných mestách. Taktiež aj Slovensko uvažuje o zriadení takýchto zón.

2. Lacná prevádzka

Niet pochýb o tom, že pohonná „hmota“ elektromobilov, elektrina, je lacnejšia ako palivo pre spaľovacie automobily, benzín či nafta. Navyše ceny ropy búdu s ubúdajúcimi zásobami stúpať, zatiaľ čo náklady na výrobu energie budú vďaka novým technológiám a zvyšujúcemu sa dopytu klesať. Viac informácií nájdete v kapitole Elektromobil a prevádzkové náklady.

3. Nenáročná údržba a lacný servis

Pohonná jednotka elektromobilov je oveľa jednoduchšia ako v prípade spaľovacích áut. Má preto oveľa menej pohyblivých častí, ktoré by sa pokazili a vyžadujú údržbu. Z tohto dôvodu je ich údržba oveľa lacnejšia, rovnako ako poplatky za servis. Viac informácií nájdete v kapitole Servis elektromobilu.

4. Bezpečnosť

Vďaka svojej konštrukcii sú elektromobily vo všeobecnosti bezpečnejšie ako klasické automobily. Absencia masívneho spaľovacieho motora v prednej časti výrazne zväčšuje deformačnú zónu pri čelnej zrážke. Batérie umiestnené do podlahy zas znižujú ťažisko elektromobilu. To má vplyv na jeho stabilitu. Elektromobily majú vďaka rekuperácii rýchlejší nástup brzdného účinku a už v základnej výbave sú väčšinou vybavené množstvom pokročilých bezpečnostných prvkov, vrátane autonómnych systémov. Podrobnejšie informácie nájdete v kapitole Bezpečnosť elektromobilov.

5. Tichá prevádzka

Mnohí vodiči, ktorí nikdy nešoférovali elektromobil si myslia, že by im chýbal charakteristický zvuk motora. Nuž z našej skúsenosti vieme, že to je omyl. Všetci, ktorých poznáme a mali možnosť sa odviesť v elektromobile, zhodne tvrdia, že by si na to „ticho“ zvykli. A tí, ktorí už odjazdili väčšie množstvo kilometrov hovoria o návykovom tichu a želali by si, aby aj ich automobil jazdil tak ticho. Predsa len hluk je jeden z najsilnejších faktorov stresu. Pre upresnenie uvádzame, že elektromobil samozrejme nie je zvukotesný. Pri jazde je počuť odvalovanie kolies a logicky pri vyšších rýchlostiach aj aerodynamický hluk.

6. Jazdné vlastnosti

Elektromobily majú k dispozícii maximálny krútiaci moment v celom spektre otáčok. To znamená, že už od prvej otáčky je k dispozícii plný výkon motora. Vďaka tomu majú elektromobily lepšiu akceleráciu a pružné zrýchlenie, ktoré sa dajú najlepšie využiť pri pripájaní sa do jazdného pruhu, či pri predbiehaní (nie je nutné žiadne podraďovanie). Navyše výška krútiaceho momentu elektromobilov je veľmi podobná porovnateľným automobilom so vznetovým motorom. Podrobné informácie o tejto problematike nájdete v kapitole Jazdné vlastnosti elektromobilov.

7. Plynulá jazda

Plynulá jazda vyplýva zo spomínaného krútiaceho momentu, ktorý je dostupný v plnej výške v celom spektre otáčok. Motor tak nemusíte vytáčať do „potrebých“ otáčok, nie je nutné podraďovanie pri prebiehaní a nezaskočí vás ani žiadna „turbodiera“. V zime navyše netreba zahrievať motor na potrebnú prevádzkovú teplotu. K plynulosti napomáha aj brzdenie rekuperáciou.

8. Jednoduchšie šoférovanie

Jednoduchšie šoférovanie elektromobilu vyplýva aj z predchádzajúcich dvoch bodov. Teda z plynulosti jazdy a jazdnej dynamiky. Navyše každý elektromobil je v podstate 1-stupňový „automat“, takže nie je nutné žiadne radenie. Ďalším návykovým benefitom je ovládanie elektromobilu, v podstate, jedným pedálom. To je možne vďaka systému rekuperácie, pri ktorom dochádza pri popustení brzdového pedála k relatívne silnému brzdnému účinku.

9. Väčšia spoľahlivosť pohonnej jednotky

Pohonnou jednotkou elektromobilu je elektrický motor (elektromotor). Medzi jeho veľké výhody patrí aj jeho konštrukčná jednoduchosť. Skladá sa v postate len z elektromagnetu a medeného vinutia. Takže sa v ňom nemá prakticky čo pokaziť, narozdiel od zložitých spaľovacích motorov, ktoré tvoria tisíce súčiastok.

10. Možnosť využitia batérie elektromobilu ako zdroja elektrickej energie

Batérie elektromobilov sa dajú využiť aj ako zdroj elektrickej energie pre napájanie domácnosti. V prípade výpadku prúdu, môže elektromobil poslúžiť ako záložný zdroj. Taktiež si môžte prostredníctvom elektromobilu „doviesť“ elektrinu na chalupu či chatu.

A to nie je všetko. Systém V2G od Nissanu umožňuje dokonca elektrinu z batérie elektromobilov predávať. Okrem Nissanu a jeho elektromobilov Leaf a eNV200, „dokážu“ reverzných tok elektriny aj elektromobily Tesla. A to vďaka spätnému nabíjaniu veľkokapacitného domáceho úložiska Tesla Powerwall.

11. Dva batožinové priestory

Keďže niektoré elektromobily nemajú v prednej časti motor, môžu v nej mať druhý batožinový priestor. Túto skutočnosť však využíva zatiaľ len niekoľko málo výrobcov, napríklad Tesla. Model S disponuje predným kufrom o objeme 150 litrov. Tesla Model X ponúka 100 litrov.

12. Väčší doraz na ekológiu výroby

Trendom v oblasti výroby elektromobilov je používanie ekologickejších a recyklovaných materiálov. Napríklad časť interiéru a karosérie Nissanu Leaf je vyrobená z platových fliaš, igelitových tašiek či starých autodielov a domácich spotrebičov.

Továrne taktiež zvyknú využívať obnoviteľné zdroje energie. Napríklad továreň na výrobu elektrického bestselleru Nissan Leaf je napájaná solárnou a veternou energiou. Rozostavaná továreň spoločnosti Tesla (Gigafactory)  bude zásobovaná solárnou energiou získanou prostredníctvom strešných solárnych panelov, ktoré sa budú rozprestierať na ploche 1,2 milióna m², ako aj veternou energiou.

Na druhej strane treba povedať, že kvôli chemikáliám, ktoré sa používajú pri výrobe batérií, zanecháva bežná výroba elektromobilov, bez dôrazu na využívanie obnoviteľných zdrojov energie a ekologickejších materiálov, väčšiu ekologickú stopu, ako pri výrobe spaľovacieho automobilu.

13. Žiadne primárne emisie

Paradoxne, na záver uvádzame najzásadnejšiu výhodu a najdôležitejší, ale aj najznámejší benefit elektromobilov. Tými sú nulové emisie vypúšťané do ovzdušia. Ale čo to vlastne znamená? Zjednodušene to znamená lepšie zdravie pre našu planétu, a teda aj pre nás. Žiaľ ostatná zima potvrdila, že zdraviu nebezpečné hladiny smogu nie sú len problémom čínskych metropol, ale aj Slovenska.

Len v Hongkongu zomrelo minulý rok na následky respiračných ochorení, spôsobených vysokými emisiami, 2000 ľudí. Pre porovnanie, následkom dopravných nehôd došlo k 122 úmrtiam. A to je hladina smogu v Hongkongu na úrovni smogu v nemeckom Berlíne. Takže sa nejedná len o problém čínskych priemyselných veľkomiest. V Pekingu je táto hladina takmer 3-krát vyššia, čo podľa výpočtov svetovej zdravotníckej organizácie WHO skracuje priemernú dĺžku života o 23 mesiacov. Treba zdôrazniť, že sa jedná priemer. Obyvatelia, ktorý sú dennodenne v centre týchto hladín, žijú kratšie až o niekoľko rokov.

Taktiež treba povedať, že emisie nevplývajú negatívne len na dýchaciu sústavu, ale aj na kožnú, tráviacu a obehovú. A samozrejme majú výrazný vplyv na klímu našej planéty. Extrémne zrýchlené globálne otepľovanie je holý fakt. Ten, čo tvrdí niečo iné, je buď neinformovaný, alebo globálne otepľovanie úmyselne popiera z dôvodu ekonomických záujmov.

Dosť často sa objavujú názory, že elektromobily jazdiace na elektrinu, ktorá bola vyrobená v elektrárňach produkujúcich emisie, nie sú vôbec ekologickejšie ako spaľovacie automobily. To však nie je vôbec pravda. Tejto problematike sa venujeme podrobnejšie v kapitole Je elektromobil skutočne ekologický?.

 

Nevýhody elektromobilov

Samozrejme, ako všetko, tak aj elektromobily majú svoje za a proti. Výhody elektromobilov sme už predstavili, avšak treba spomenúť aj ich nedostatky, na ktorých bude treba ešte popracovať.

1. Obstarávacia cena

Obstarávacia cena elektromobilov je aktuálne asi najväčšou bariérou ich kúpy. Elektromobil môže byť aj o polovicu drahší ako porovnateľný spaľovací automobil. Dôvodom vysokých cien je najmä nízka produkcia a drahé batérie. Rozdiel obstarávacej ceny sa vám však vráti prostredníctvom nižších prevádzkových a servisných nákladov. Podrobné informácie o tejto problematike nájdete v kapitole Elektromobil a prevádzkové náklady.

2. Doba nabíjania je dlhšia ako tankovanie paliva

Ekvivalentom tankovania paliva do spaľovacích automobilov, je nabíjanie batérie elektromobilu elektrickou energiou. To však trvá dlhšie ako tankovanie. Pri cestách na dlhé sa nie je možné zaobísť bez dodatočného nabíjania na nabíjacích staniciach. Dĺžka nabíjania záleží od kapacity batérie, jej technológie a výkonu nabíjacej stanice. Na rýchlonabíjačkách získate 100 km dojazd za 10 až 30 minút.

Výkony nabíjačiek však neustále rastú, takže táto doba sa bude neustále skracovať. Taktiež si treba uvedomiť, že drvivú väčšinu času sa elektromobily nabíjajú doma, keď nie sú v prevádzke. Vtedy nám jej jedno, ako dlho sa nabíjajú. A na dlhšie cesty sa väčšina vodičov vydáva len pár-krát za rok. Podrobné informácie o tejto problematike nájdete v kapitole Rýchlosť nabíjania elektromobilu.

3. Nutnosť plánovania dlhých ciest kvôli nabíjaniu

Napriek tomu, že na Slovensku, v okolitých štátoch a západnej Európe máme dostatočnú sieť nabíjacích staníc, nie je pri dlhých cestách na škodu, naplánovanie trasy. Pretože nie je nabíjačka ako nabíjačka. Tie majú rôzny nabíjací výkon, od ktorého závisí rýchlosť nabíjania. Takže prečo si nevybrať tie, ktoré nám elektromobil nabijú v čo najkratšom možnom čase. A netreba zabúdať ani na to, že nie každá nabíjačka musí byť kompatibilná s nabíjacím portom nášho elektromobilu. O kompatibilite však dokážu informovať mnohé aplikácie, stránky a samozrejme vlastný palubný systém elektromobilu.

O nutnosti plánovania však musíme hovoriť v prípade, že sa chystáme do oblasti, kde je nabíjacia infraštruktúra na slabšej úrovni, napríklad na východ od Slovenska či v niektorých balkánskych štátoch.

4. Väčšia ekologická stopa pri výrobe

Kvôli chemikáliám potrebným pri výrobe batérií, zanecháva produkcia elektromobilov väčšiu ekologickú stopu. Tú však výrobcovia kompenzujú napríklad používaním elektrickej energie z obnoviteľných zdrojov, výrobou častí elektromobilov z ekologickejších či recyklovaných materiálov. Vo všeobecnosti však platí, že elektromobil zmaže túto „stopu“ už po 3 000 km svojej bezemisnej prevádzky.

5. Vyššia hmotnosť kvôli objemnej batérii

Elektromobily sú vo všeobecnosti ťažšie ako porovnateľné spaľovacie automobily. A to kvôli objemným batériám. Aj napriek tomu, že elektromotor je ľahší ako spaľovací motor, vážia napríklad elektromobily nižšej strednej triedy zhruba o 15 až 20 % viac ako porovnateľné „spaľováky“.

Váha batérie však paradoxne zlepšuje manévrovateľnosť vozidla. Tým, že sú batérie implementované do podlahy, sa významne znižuje ťažisko. To má vplyv nielen na manévrovateľnosť, ale aj na stabilitu vozidla, čím sa zvyšuje jeho bezpečnosť.

6. Menší výber

Ponuka elektromobilov na dnešnom trhu sa nedá porovnávať s ponukou štandardných automobilov. Tým sa automobilky venujú predsa len oveľa dlhšiu dobu. Takže nie každý si dokáže nájsť elektromobil, ktorý mu vyhovuje. Svitá však na lepšie časy. Významní automobiloví hráči, ale aj startupy, prinesú v najbližších rokoch desiatky nových a zaujímavých elektrických modelov, takže bude z čoho vyberať. Aktuality o pripravovaných elektromobiloch nájdete v našej sekcii Elektromobily.

 

Dojazd elektromobilov

O dojazde elektromobilov sa už popísalo všeličo. Zdá sa, že ešte stále prevláda mýtus, že elektromobily majú dojazd, ktorý obmedzuje ich majiteľov v bežnej prevádzke. Pozrime sa však na to, ako sa veci skutočne majú. Pre názornosť aktuálnych možností, začneme elektromobilmi Tesla.

Najnovší prírastok do portfólia značky Tesla, verzia Model S 100D má podľa realistickejšej metodiky EPA dojazd 537 km (632 km NEDC). To robí z tohto modelu elektromobil s najväčším dojazdom na svete, spomedzi všetkých sériovo vyrábaných elektrických automobilov. S najslabšou verziou Modelu S 75 (bez obmedzenia) by nemal byť problém pokoriť trasu z Bratislavy do Košíc na jedno nabitie. Samozrejme je tu oprávnená námietka, že sa nejedná o najbežnejší elektromobil, a to hlavne z hľadiska jeho ceny. Pozrime sa preto ďalej na typickejších zástupcov elektrických automobilov.

 

Dojazd „bežných“ elektromobilov

dojazd elektromobilov
Zdroj: autocar.co.uk

V nasledujúcej tabuľke uvádzame reálne nameraná dojazdy elektromobilov nižšej strednej triedy. Tieto údaje boli namerané počas porovnávacieho testu motoristického magazínu Autocar.

BMW i3 VW e-Golf Hyundai Ioniq Nissan Leaf
281 km 164 km 212 km 183 km

Z výsledkov tohto testu vyplýva, že nový elektromobil Hyundai Ioniq Electric a modernizované BMW i3 majú dojazd nad donedávna ešte mýtickou hranicou 200 km, pričom „i-trojka“ nemá ďaleko od „tristovky“. 200 km dojazd „nepreliezli“ modely Nissan Leaf a VW e-Golf, ktoré sú však na trhu veľmi dlhú dobu. Ich nastupujúce verzie sa predstavia už tento rok a ponúknu dojazd 250 km (Leaf novej generácie), resp. 200 km (modernizovaný e-Golf 2017). Takže trend je zdá sa jasný.

Najnovší prírastok do rodiny kompaktných elektromobilov, Chevrolet Bolt, ktorý sa začne tento rok predávať na európskom trhu ako Opel Ampera-e, dosiahol v testoch dojazd úctyhodných 423 až 467 km. To sú na elektromobil s cenou 37 500 dolárov bez dotácii, vynikajúce čísla. Ekvivalentná cena na slovenskom trhu, s 5000 € dotáciou, by bola 29 900 €. Koncom roka 2017 príde na trh obrovský konkurent Chevroletu. A to Tesla Model 3. Tá za 35 000 dolárov, bez dotácie, ponúkne dojazd 346 km (EPA).

A nemôžeme zabudnúť ani na tohtoročnú novinku na Slovenskom trhu, malý elektromobil Renault Zoe. Jeho nová verzia so 41 kWh batériou ponúkne veľmi pekný reálny dojazd, a to okolo 300 km.

 

Dojazd „exotických“ elektromobilov

dojazd elektromobilov porsche-mission e
Porsche Mission E. Zdroj: Porsche

Pozrime sa však aj na dojazd pripravovaných prémiových elektromobilov, ktoré odzrkadľujú aktuálne technologické možnosti. Porsche Mission E – 500 km (NEDC), Fisker EMotion – 640 km (?), Lucid Air – 644 km (EPA), Jaguar I-Pace – 400 km (EPA), Faraday Future FF 91 – 608 km (EPA), Audi Q6 e-tron – 498 (EPA),  VW I.D. BUZZ – 432 km (EPA).

Keď si to zhrnieme, môžeme povedať, že súčasné elektromobily majú skutočný dojazd minimálne 200 km. A to by malo postačovať drvivej väčšine bežných vodičov na odvezenie detí do školy, jazdenie do práce a na nákupy. Na „suchu“ však neostanete ani pri výletoch na kratšie vzdialenosti. Pri dlhších cestách, sa ale už bez nabíjania nezaobídete. Našťastie máme na Slovensku, ako aj vo väčšine Európy, viac ako dostačujúcu sieť nabíjacich staníc. Na druhej strane, bežné elektromobily sa zatiaľ asi nestanú hitom obchodníkov a manažérov, ktorí denné najazdia stovky kilometrov. Vývoj však neustále napreduje a onedlho tomu môže byť inak.

 

Nabíjanie elektromobilu

nabijanie elektromobilu
Zdroj: BMW

Princíp nabíjania elektromobilu je v podstate jednoduchý, podobne ako v prípade nabíjania mobilného telefónu. V prípade, že nabíjate elektromobil doma a nemáte wall box, jednú časť nabíjacieho kábla zastrčíte do elektromobilu a druhú do zásuvky. V prípade, že máte doma nainštalovaný wallbox (nástenná „nabíjačka“ napojená na sieť) stačí jeho kábel zasunúť do nabíjacieho portu elektromobilu. V prípade externého nabíjania na nabíjacích staniciach, musí byť daná nabíjacia stanica kompatibilná s nabíjacím portom elektromobilu.

 

Nabíjacie porty elektromobilov

Elektromobily môžu byť vybavené nabíjacím portom typu:

  • Type 2 – hovorovo sa nazýva aj Mennekes, podľa jeho výrobcu. Od roku 2013 je Type 2 európskym nabíjacím štandardom. Podporujú ho napríklad elektromobily značky Tesla.
  • CCS (Combo Charging System) – jedná sa o kombinovaný systém nabíjania, ktorý podporuje nabíjanie jednosmerným (DC) aj striedavým prúdom (AC). Je odvodený z konektorov typu SAE J1772 a Type 2. Tento štandard podporujú automobilky Volkswagen, BMW, Hyundai, Ford, Daimler (Mercedes-Benz), a General Motors.
  • CHAdeMO – tento štandard podporujú japonské automobilky Nissan, Mitsubishi, Subaru a Toyota.

Čo sa týka kompatibility nabíjacích staníc a elektromobilov, netreba si nad tým príliš lámať hlavu. Palubné systémy elektromobilov či mobilné aplikácie vás dokážu informovať o kompatibilite s vaším vozidlom. Ak však plánujete cestu na dlhšiu vzdialenosť a chcete sa zdržať nabíjaním čo najkratší čas, odporúčame si trasu dôkladne naplánovať, aby ste mali po ceste k dispozícii kompatibilné rýchlonabíjačky.

 

Rýchlosť nabíjania elektromobilu

rychlost nabijania elektromobilu
Zdroj: inhabitat.com

Tu už sa nám začínajú veci trošku komplikovať. Rýchlosť nabíjania záleží od mnohých faktorov ako výkon nabíjacieho zdroja (nabíjacia stanica, wallbox, domáca zásuvka), výkon palubnej nabíjačky, typ prúdu (jednosmerný, striedavý), nabíjacích schopností batérie a samozrejme od jej kapacity.

Nabíjanie na nabíjacích staniciach

V prípade nabíjania na nabíjacích staniciach je podstatný výkon nabíjacej stanice a schopnosti batérie elektromobilu prijímať tento výkon. Nabíjacie stanice môžu nabíjať jednosmerným (DC) alebo striedavým prúdom (AC).

Nabíjacie stanice s nabíjaním jednosmerným prúdom

Jednosmerným prúdom sa batéria elektromobilu nabíja priamo. Výkon takýchto nabíjačiek sa pohybuje od 44 kW vyššie. V takomto prípade sa často hovorí o rýchlonabíjaní. Rýchlonabíjačky dokážu nabíjať rýchlosťou od 100 (najmenej výkonné CHAdeMO) do 540 km/h (Tesla Supercharger). Tieto hodnoty vyjadrujú, aký dojazd v km získame za hodinu nabíjania. Pri nabíjaní na súčasných rýchlonabíjačkách vieme nabiť batériu na 80 % už za 20 minút. 30 minútovým nabíjaním je možné získať pre elektromobily BMW i3, Nissan Leaf, VW e-Golf či KIA Soul EV dojazd 120 až 160 km. Tesle vystačí pol hodina nabíjania na Superchargery na zisk 270 km dojazdu.

Na trh sa však chystajú oveľa výkonnejšie nabíjacie stanice, ktoré by mohli skrátiť nabíjanie na 5 až 10 minút. Jedná sa napríklad o nabíjacie stanice ChargePoint Express Plus, Tesla Supercharger V3 či spoločné nabíjačky od BMW, Audi, Porsche, Mercedes a Ford.

Na to, aby sme dokázali využiť plnohodnotný nabíjací výkon nabíjacej stanice, musí byť batéria elektromobilu schopná takýto výkon prijať. Ak na to nie je stavaná, palubný systém elektromobilu prispôsobí výkon nabíjania tak, aby sa nedošlo k poškodeniu batérie.

Nabíjacie stanice s nabíjaním striedavým prúdom

Striedavým prúdom sa batéria nabíja sprostredkovane cez palubnú nabíjačku elektromobilu, ktorá je nainštalovaná priamo vo vozidle. V takomto prípade je nabíjacia stanica v podstate iba praktickejšou domácou zásuvkou, resp. „wall boxom“. Striedavý prúd z nabíjacej stanice prechádza palubnou nabíjačkou elektromobilu, ktorá ho mení na jednosmerný prúd, pretože batéria sa dá nabiť iba jednosmerným prúdom.

Takéto nabíjačky disponujú bežne výkonom 11 a 22 kW. Na využitie plného nabíjacieho výkonu stanice musí mať palubná nabíjačka elektromobilu minimálne taký výkon, ako nabíjacia stanica. Rýchlosť nabíjania je v takomto prípade približne 50 (11 kW) až 100 km/h (22 kW).

 

Domáce nabíjanie elektromobilu

domace nabijanie elektromobilu
Zdroj: Tesla

Pri nabíjaní cez štandardnú 1-fázovú domácu zásuvku nabíjame výkonom 3 až 3,7 kW. Takéto nabíjanie je však veľmi pomalé, cca 14 km/h. To znamená, že za 10 hodín nabíjania získame dojazd len okolo 140 km. Preto je vhodné si zriadiť v garáži alebo pred domom 3-fázovú 16A 400V zásuvku, čo nie vo väčšine štandardných domov žiadny problém.

Takáto zásuvka dokáže nabíjať výkonom 11 kW, čo znamená rýchlosť nabíjania na úrovni 50 km/h. Takýto výkon vám bezpečne postačí na nabitie každého elektromobilu počas noci. Ak by sa vám málilo, môžete si zriadiť aj 3-fázovú 32A 400V zásuvku s 2-násobným výkonom. V tomto prípade však už bude pravdepodobne nutný väčší zásah do elektrickej siete.

Praktickejšou a estetickejšou náhradou domácej zásuvky sú tzv. wall boxy, ktoré sa inštalujú na stenu. Ich kábel jednoducho zasuniete do nabíjacieho portu elektromobilu a nabíjate. Ich výkon záleží od výkonu elektrickej siete, do ktorej sú zapojené (rovnako ako zásuvky – do 22 kW).

Nabíjanie elektromobilov je vďaka rôznorodosti nabíjačiek, batérií a nabíjacích štandardov veľmi obšírnou problematikou. Podrobné informácie z tejto oblasti nájdete na našom partnerskom webe v sekcii Nabíjanie elektromobilov Tesla – všetky informácie na jednom mieste. Napriek tomu, že sa jedná o problematiku nabíjania elektromobilov značky Tesla, princípy nabíjania ostatných elektromobilov sú rovnaké.

 

Nabíjacie stanice pre elektromobily

nabijacie stanice pre elektromobily
Zdroj: Tesla

Bez nabíjacích staníc sa pri cestách na dlhšie vzdialenosti vodič elektromobilu nezaobíde. Našťastie na Slovensku máme veľmi slušnú sieť nabíjacích staníc. To isté platí aj v prípade v okolitých štátov (s výnimkou Ukrajiny) a západnej Európy. Nie je však nabíjacia stanica ako nabíjacia stanica.

Typy nabíjacích staníc

Nabíjacie stanice delíme na dva základné typy. Nabíjacie stanice, ktoré nabíjajú batériu elektromobilu priamo jednosmerným prúdom a nabíjacie stanice, ktoré nabíjajú batériu striedavým prúdom, a to sprostredkovane pomocou palubnej nabíjačky.

„Jednosmerné“ nabíjacie stanice môžu mať výkon od 44 do 145 kW, preto sa nazývajú aj rýchlonabíjačky. „Striedavé“ nabíjacie stanice sú v podstate len exteriérovými domácimi zásuvkami. Ich nabíjací výkon sa pohybuje väčšinou od 11 do 22 kW. Samozrejme existujú aj kombinované nabíjacie stanice, ktoré dokážu nabíjať jednosmerným aj striedavým prúdom, ale sú menej obvyklé.

Nabíjacie stanice sú jedným z najdôležitejších faktorov pre rýchlosť nabíjania elektromobilov. Preto sa ich výkon neustále zvyšuje. Aktuálne je najvýkonnejšou nabíjačkou na svete Tesla Supercharger 2. generácie s výkonom 145 kW, ktorá dokáže predĺžiť dojazd Tesly Model S o 270 km za 30 minút.

Ultravýkonné nabíjacie stanice sú už na ceste

Na ceste sú však nové, ďaleko výkonnejšie nabíjacie stanice, napríklad spoločné nabíjačky od BMW, Audi, Porsche, Mercedes a Ford, ChargePoint Express Plus či 3. generácia Tesla Supercharger V3. Tie ponúknu výkon od 350 kW vyššieChargePoint Express Plus dokáže nabíjať rýchlosťou 11 km za minútu. Elon Musk sa k týmto konkurenčným nabíjačkám vyjadril, že v porovnaní s Tesla Supercharger V3, sú to len detské hračky. Špekuluje sa, že táto nabíjačka by mohla byť schopná nabiť veľké batérie elektromobilov Tesla (60 až 100 kWh) za 5 až 10 minút.

Spôsoby nabíjania elektromobilov na nabíjacích staniciach

Na to aby sme mohli využívať služby nabíjacích staníc, je vo väčšine prípadov nutné vybavenie identifikačnej RFID karty u správcu siete nabíjacích staníc. Pred spustením nabíjania sa musí majiteľ prostredníctvom karty autorizovať. Ak je nabíjanie spoplatnené, priradí softvér nabíjačky nabíjacie služby k účtu zákazníka.

Pri nabíjaní elektromobilov Tesla na nabíjačkách Supercharger, stačí zapojiť nabíjací kábel do portu elektromobilu. Nabíjačka dokáže sama identifikovať vozidlo a priradiť ho k účtu majiteľa. O podmienkach nabíjania na nabíjačkách Tesla Supercharger sa dočítate na našom partnerskom webe v článku Tesla zverejnila výšku poplatkov za nabíjanie na staniciach Supercharger.

Taktiež existujú aj bezplatné nabíjacie stanice, kde sa netreba autorizovať. Jednoducho sa pripojíte a nabíjate.

Nabíjacie stanice pre elektromobily na Slovensku

nabijacie stanice pre elektromobily na slovensku
Zdroj: nabky.com

Za slušnú nabíjaciu infraštruktúru na Slovensku vďačíme predovšetkým spoločnostiam GreenWay (CHAdeMO), Slovenské elektrárne, ZSE, VSE, Tesla (Supercharger a „destination charging“) a Nissan (CHAdeMO). Väčšina s nich sú tzv. rýchlonabíjačky s výkonom od 44 kW vyššie. Nabíjanie je navyše väčšinou zdarma.

Táto sieť rýchlonabíjačiek je relatívne bohato doplnená menej výkonnými prevažne „striedavými“ nabíjacími stanicami či walboxami v hoteloch, nákupných centrách či pri reštauráciách. Nabíjanie je taktiež v drvivej väčšine zdarma.

Podrobné informácie o nabíjacích staniciach na Slovensku nájdete na našom partnerskom webe v sekcii Nabíjacie stanice na Slovensku.

Mapy nabíjacích staníc
mapy nabijacich stanic
Zdroj: Tesla

Najlepšie mapy nabíjacích staníc na Slovensku nájdete na stránkach:

Výborná mapa nabíjacích staníc v Česku je na stránke:

Užitočné mapy nabíjacích staníc v celej Európe nájdete na stránkach:

Podrobné informácie o nabíjacích staníciach nájdete na našom partnerskom webe v sekcii Nabíjacie stanice na Slovensku, v Česku a Európe.

 

Batérie elektromobilov

bateria elektromobilu chevrlotet bolt
60 kWh batéria Chevroletu Bolt. Zdroj: LG Chem

Alfou a omegou elektromobilov sú ich batérie. Tie sú hlavným faktorom dojazdu a ceny elektromobilu. Súčasným štandardom batérií je technológia Li-Ion, resp. používanie Lítium-Iónových článkov. Tie sú veľmi podobné „tuškovým“ batériám, len sú väčšie a majú vyššiu energetickú hustotu. 85 kWh batéria Tesly Model S sa skladá zo 7 104 batériových článkov. Každý z nich má rozmer 65 x 18 mm. Skladajú sa do batériových modulov, ktoré sa ukladajú do jednoliateho bloku. Celá batéria váži 540 kg. Takýto batériový blok sa pri moderných elektromobiloch montuje do podlahy, vďaka čomu má vozidlo nižšie ťažisko a lepšie manévrovacie schopnosti.

 

Dôležité atribúty batérií

Najdôležitejšími atribútmi batérií elektromobilov sú:

Kapacita batérie

Kapacita batérie je faktorom dojazdu elektromobilu. Kapacita batérií súčasných moderných elektromobilov sa pohybuje zhruba od 28 do 100 kWh. Vďaka takejto kapacite dosahujú elektromobily reálny dojazd od 200 do 536 km (Tesla Model S 100D) Ako štandard pre najbližšie roky sa javia cca 60 kWh batérie. Tie by mali ponúknuť reálny dojazd okolo 350 až 400 km.

Energetická hustota batérie

Energetická hustota vyjadruje kapacitu batérie k jej hmotnosti. To znamená, že čím vyššia je energetická hustota, tým nižšia je hmotnosť batérie, ale aj výrobné náklady, keďže sa spotrebuje pri výrobe menej materiálu. Batéria Tesly Model S má energetickú hustotu 265 Wh/kg.

Výrobná cena batérie

Výrobná cena je jedným z dvoch hlavných atribútov, ktoré zásadne ovplyvňujú celkovú cenu elektromobilu. Tá za posledných 6 rokov klesla o 80 % na súčasný priemer 237 dolárov za 1 kWh. Pri cene 100 dolárov za 1 kWh by mohli elektromobily dorovnať ceny porovnateľných „spaľovákov“. Tesle by sa to mohlo podariť už v roku 2018.

Schopnosť rýchleho nabíjania

To, že svoj elektromobil napojíte na super-výkonnú nabíjaciu stanicu, ešte nezaručuje, že batéria vášho elektromobilu sa nabije „super-rýchlo“. Niektoré typy batérií by mohol vysoký nabíjací výkon poškodiť, preto palubné systémy elektromobilov nastavia odber nižšieho výkonu. Ak plánujete elektromobil nabíjať čo najrýchlejšie na rýchlonabíjacích stanciach, overte si pred ich kúpou atribút rýchlosti nabíjania.

bateria elektromobilu renault zoe
41 kWh batéria Ranaultu Zoe. Zdroj: Renault

 

Strata kapacity

O strate kapacity batérií do elektromobilov sa toho popísalo už množstvo. Hlavné však je, že podstatná časť pôvodnej kapacity by mala vydržať vo všeobecnosti minimálne 8 rokov.

Zhruba 300 vlastníkov Tesly Model S sleduje a zdieľa ostatkovú kapacitu batérií svojich elektromobilov. Výstupy tohto dlhodobého prieskumu sú viac ako potešiteľné. Po najazdení 100 000 km (cca 250 nabíjacích cyklov) nastáva pokles kapacity o 5 %. Každých ďalších 50 000 km sa znižuje dojazd už len o 1 %.

Tesla Model S americkej medzimestskej taxi služby Tesloop najazdila vyše 320 000 km, pričom jej reálna strata kapacity batérie bola len 6 %. Elon Musk sa dávnejšie vyjadril, že po simulovaných 800 000 km, by mala klesnúť kapacita batérie o 20 %. Z predchádzajúcich výsledkov však vyplýva, že strata kapacity batérií Tesla by mohla byť v skutočnosti ešte nižšia. Tesla vyrába bežne používané batérie technológie Li-Ion, takže batérie elektromobilov ostatných značiek by na to mohli byť podobne.

bateria elektromobilu tesla model s
Batéria Tesly Model S zapúzdrená v titanovom kryte a integrovaná do podlahy. Zdroj: hgmsites.net

Medzi najvýznamnejších výrobcov batérií do elektromobilov patria Tesla, Panasonic, Samsung LG Chem. Existuje však aj množstvo start-upov, ako napríklad rakúsky Kreisel Electric či český HE3DA.

Elektromobil a prevádzkové náklady

elektromobil prevadzkove naklady
Zdroj: motortrend.com

Prevádzkové náklady elektromobilu záležia od jeho spotreby elektrickej energie, cien elektriny a servisných nákladov. Obdobne ako v prípade „spaľovacích“ automobilov. Elektromobily však majú tú výhodu, že cena za elektrinu na 100 km je výrazne nižšia ako cena benzínu či nafty. Podobne je tomu aj v prípade servisu, pretože pohonná jednotka elektromobilu je konštrukčne oveľa jednoduchšia a menej namáhaná ako v prípade automobilov so spaľovacím motorom.

 

Servis elektromobilu

Bežná kontrola elektromobilu zhŕňa kontrolu pneumatík a doplnenie vody do ostrekovačov. Samozrejme je možné skontrolovať brzdový systém, ale brzdy elektromobilov sú vďaka rekuperačnému systému oveľa menej namáhané. Taktiež nie je na škodu skontrolovať geometriu kolies. Tesla napríklad odporúča aj výmenu chladiacej kvapaliny, ale to len raz za 4 roky, resp. po 80 000 km. Záruka na elektromobily Tesla však nie je podmienená servisovaním vozidla.

elektromobil servis

Pri servisnej prehliadke elektromobilu nie nutná výmena:

  • filtrov
  • chladiacej kvapaliny
  • palivového oleja
  • oleja v prevodovke
  • sviečok

 

Porovnanie servisných nákladov na Nissan Leaf a Hyundai Ioniq Electric

 

Pre získanie predstavy o servisných nákladoch uvádzame ceny servisných úkonov pre elektromobily nižšej strednej triedy. Nissan Leaf je najpredávanejším elektromobilom na svete a Hyundai Ioniq Electric je najnovším elektromobilom na našom trhu. Ceny sú len orientačné, pretože sa môžu v každom servisnom stredisku líšiť.

Nissan Leaf Hyundai Ioniq
Hodinová sadzba 31 € 17 €
Čas prehliadky  v normohodinách 0,8 0,7
Cena bez vým. kvapalín a nast. geometrie 37 € 12 €
Vým. brzd. kvapaliny 36 € 13 €
Vým. chlad. kvapaliny (1×10/r.) 55 € 51 €
Nastav. Geometrie 38 € 20 €
Počet ročných prehliadok zdarma 8 5
Celkové servisné náklady za 10 rokov 277 € 332 €

 

Spotreba elektromobilov

elektromobil spotreba
Zdroj: Tesla

Priemerná reálna spotreba elektromobilu nižšej strednej triedy je zhruba 14 až 16 kWh na 100 km. V prípade výkonných prémiových vozidiel (Tesla Model S a X) to môže byť až 24 kWh na 100 km. Priemerná cena za 1 kWh elektrickej energie na Slovensku bola v roku 2016, podľa Eurostatu0,14 €. Cena za odber prúdu v nočnom čase, kedy sa elektromobily v drvivej väčšine času nabíjajú, by mala byť cca 0,10 €/1 kWh. To znamená, že pri domácom nočnom nabíjaní nás vyjde 100 km jazda elektromobilom na 1,40 až 2,40 €. Pre porovnanie, rovnaká cesta „spaľovákom“ s reálnou spotrebou 6 l a cene 1,30 € za liter benzínu, stojí 7,80 €.

Zaujímavú porovnávaciu tabuľku so spotrebou a nákladmi na elektrinu najpredávanejších elektromobilov nájdete na wikipédii. Pozor, uvádzaná spotreba je podľa metodiky EPA a prevádzkové náklady sú odvodené od ceny elektrickej energie v USA (0,13 dolára/1 kWh).

 

Porovnanie prevádzkových nákladov elektromobilu a spaľovacieho automobilu

Porovnáme si typického predstaviteľa moderných elektromobilov nižšej strednej triedy Hyundai Ioniq Electric (30 000 € po započítaní 5 000 € dotácie na elektromobily) a jeho „spaľovacieho“ súrodenca rovnakej triedy, podobnej výbavy a výkonu, Hyundai i30 (20 000 €). Takže tu máme rozdiel 10 000 €.

Teraz si vypočítame, po koľkých km sa nám vrátia náklady za pohonné „hmoty“. Priemerná cena za 1 kWh elektrickej energie na Slovensku bola v roku 2016 podľa Eurostatu 0,14 €. Cena za odber prúdu v nočnom čase by mala byť zhruba 0,10 €/1 kWh. Cenu za 1 l benzínu si stanovíme na 1,30 €.

Elektromobil Hyundai Ioniq má 28 kWh batériu a reálny dojazd (podľa testov a skúsenosti našich čitateľov) 240 km. Tzn. spotrebu 11,67 kWh na 100 km. To sa rovná 1,167 € na 100 km. Pri Hyundaii i30 počítajme s reálnou spotrebou 5,5 l/100 km. To sa rovná 7,15 € na 100 km. Čiže elektromobil Hyundai Ioniq nám ušetrí cca 6 € na 100 km. Z toho nám vyplýva, že rozdiel obstarávacej ceny (10 000 €) sa nám vráti po najazdení 167 000 km.

Priemerné náklady na energiu elektromobilu na 100 km sa vo všeobecnosti odhadujú na 2 €. Rozdiel obstarávacej ceny by sa mal vo všeobecnosti vrátiť, prostredníctvom nižších prevádzkových nákladov, po 150 až 200 tisíc kilometroch.

 

Elektromobil a cena

elektromobil cena
Zdroj: tesla.com

Novodobé počiatky elektromobilizmu boli extrémne náročné. Prvé elektromobily boli „lenivé“, mali mizerný dojazd, s výnimkou domácich zásuviek ich nebolo kde nabíjať, navyše nabíjanie bolo veľmi pomalé a rozhodne nevynikali krásou či úžitkovými vlastnosťami a už vôbec nie pomerom ceny a hodnoty. Taktiež nebolo v podstate z čoho vyberať.

Dnešné moderné elektromobily však všetky tieto neduhy dokázali do značnej miery eliminovať, a to aj vďaka rozvoju nabíjacej infraštruktúry. Teda takmer všetky. Jednou z najväčších bŕzd ich masívnejšieho rozširovania ostáva vysoká obstarávacia cena. Rozdiel 7 až 10 tisíc € (často aj viac) pri vozidle nižšej strednej triedy, je ťažko prekonateľnou psychologickou bariérou. Nič na tom nemení ani fakt, že po zohľadnení prevádzkových nákladov sa tieto cenové rozdiely stierajú.

 

Prečo majú elektromobily tak vysoké ceny?

Iste si mnohí ešte pamätajú ceny SSD diskov v ich začiatkoch. V čase kedy štandardné mechanické HDD dosahovali kapacitu 500 GB, stáli 32 GB SSD disky pomaly toľko, čo slušný multimediálny PC. Nová vyvijajúca sa technológia znamenala malú produkciu, čo sa výrazne podpisovalo na ich cenách. No a podobne to je aj s elektromobilmi, predovšetkým s ich batériami.

V súčasnosti je stále málo výrobcov batérii do elektromobilov, navyše ich produkcia je tak malá, že im neumožňuje optimalizáciu výrobných nákladov. Z tohto dôvodu sú ceny batérii natoľko vysoké, že výrazne predražujú celkovú výrobnú cenu elektromobilov. A vysoká cena spôsobuje nízky dopyt. Je to typický začarovaný kruh, ktorým si prešla asi každá nová technológia. Netreba však zabudnúť ani na to, že výrobnú cenu ovplyvňuje aj efektivita batériových článkov, ktorá neustále narastá.

 

Ceny batérií budú klesať, a tým aj ceny elektromobilov

Svitá však na lepšie časy. A to hlavne vďaka spoločnostiam Tesla a Panasonic a „ich“ rozostavanej továrne na výrobu batérií Gigafactory. Tá má byť s rozlohou 1,2 milióna m² najrozsiahlejšou stavbou sveta. Tesla plánuje ročnú produkciu akumulátorov s celkovou kapacitou 35 GWh. Navyše už pripravuje plány na výstavbu ďalšej Gigafactory v Európe. To samozrejme nenecháva chladnou konkurenciu. Automobilky a výrobcovia si uvedomujú, že si nemôžu dovoliť zaspať na vavrínoch. Veď elektromobily sú zdá sa jediným možným smerom udržateľnej dopravy.

Za posledných 6 rokov klesla výrobná cena batérii o 80 % na priemernú cenu 227 $ za 1 kWh. Do roku 2020 má klesnúť na 190 $ a v rokoch  2025 až 2030 pod 100 $. Tesla však tvrdí, že je v súčasnosti schopná vyrábať 1 kWh za 190 $. Navyše jej nové batériové články 2170, ktoré sa začnú už v polovici roka 2017 montovať do Tesly Model 3, majú mať nižšiu cenu o ďalších 30 %. Spoločnosť taktiež uvádza, že 100 $ hranicu za 1 kWh by mohla dosiahnuť už v roku 2020. A práve dosiahnutie výrobnej ceny 100 $ za 1 kWh, má byť podľa niektorých štúdií magickou hranicou, pri ktorej sa zotrú cenové rozdiely medzi porovnateľnými elektromobilmi a spaľovacími automobilmi.

Veríme, že už čoskoro sa stanú elektromobily, aj vďaka cene, tak bežnou súčasťou nášho života, ako je tomu v prípade spomínaných SSD diskov… 

Cenu ovplyvňuje aj objem produkcie

Netreba však zabúdať ani na vplyv objemu produkcie na celkovú cenu elektromobilov. Vývoj automobilu je vo všeobecnosti veľmi nákladná záležitosť. Tieto náklady sa logicky premietajú do jeho ceny. Keď však výrobca predpokladá nižší dopyt, čo je pri elektromobiloch zatiaľ istota, musí na automobil „nahodiť“ vyššiu maržu, aby sa mu splatili aj náklady na jeho vývoj. Navyše pri nízkej produkcii sa ďaleko ťažšie optimalizujú výrobné náklady.

Takže s pribúdajúcim záujmom o elektromobily, dôsledkom zvyšujúceho sa povedomia o nutnosti trvalo udržateľnej dopravy, znižovania cien batérií a väčšieho počtu výhod pre majiteľov elektromobilov, budú klesať aj celkové ceny elektromobilov.

 

Dotácie na elektromobil a plug-in hybrid

dotacie na elektromobil
Zdroj: nissaninsider.co.uk

Symbolicky 11.11.2016 prišiel na Slovensko Martin na zelenom koni. V tento deň totiž ministerstvo hospodárstva SR spustilo dotačný program na podporu elektromobility na Slovensku. K dispozícii je celkový balík financií vo výške 5,2 milióna €.

Výška štátnej dotácie na elektromobil a plug-in hybrid

Štát prispeje na elektromobil sumou 5 000 €, a to na každý jeden. Tzn, že ak si kúpi jedna osoba viac elektromobilov, dotáciu dostane na každý z nich. Na plug-in hybridné automobily (PIug-in hybridy) sa vzťahuje príspevok vo výške 3 000 €.

Elektromobily a hybridy, na ktoré sa dotácia vzťahuje

Dotácia sa vzťahuje na elektromobily s čisto elektrickým pohonom a tzv. plug-in hybridy – hybridné automobily, ktoré je možné nabíjať! Tie musia spadať do kategórie osobných automobilov (M1) alebo malých nákladných automobilov do 3,5 tony (N1). Ďalšie podmienky, ktoré musia elektromobily a plug-in hybridy spĺňať:

  • Musí sa jednať o nové vozidlo,
  • zakúpené a registrované na Slovensku (zoznam elektromobilov dostupných na Slovensku),
  • po dobu minimálne dvoch rokov.

Pozor! Na elektromobily Tesla sa príspevok nevzťahuje. Podmienkou dotácie je, že výrobca elektromobilu alebo plug-in hybridu musí mať na Slovensku oficiálne zastúpenie, ktoré je autorizované ministerstvom dopravy.

Kto môže požiadať o dotáciu na elektromobil a plug-in hybrid?

O dotáciu na elektromobil a plug-in hybrid môžu požiadať fyzické a právnické osoby, ako aj mestá a obce. Vozidlu však musí byť pridelené slovenské evidenčné číslo.

Ako požiadať o dotáciu na elektromobil a plug-in hybrid?

O dotáciu je možné požiadať priamo predajcu elektromobilu či plug-in hybridu. Predajca následne predá žiadosť importérovi značky, ktorý rezervuje finančné prostriedky u Zväzu automobilového priemyslu (ZAP).

Proces získania dotácie na elektromobil a plug-in hybrid

Po kúpe treba elektromobil alebo plug-in hybrid zaregistrovať najneskôr do 31. decembra 2017. Potom majiteľ vyplní žiadosť o poskytnutie príspevku, a to na základe potvrdenia o rezervácii prostriedkov, ktoré dostane od predajcu. Tú následne zašle spolu s kópiou Osvedčenia o registrácii vozidla časť II. (tzv. technický preukaz A4) poštou Zväzu automobilového priemyslu. Pozor, na žiadosti musí byť úradne overený podpis!

Spôsob vyplatenia dotácie

Dotácia na elektromobil/plug-in hybrid sa vypláca na 3 razy, z dôvodu vylúčenia špekulatívneho nakupovania s cieľom obohatenia sa. Prvú časť príspevku vo výške 2 000 €/1 000 € obdrží majiteľ elektromobilu po preverení žiadosti o poskytnutie príspevku, 2. časť vo výške 1 500 €/1 000 € po 12 mesiacoch od registrácie vozidla a 3. časť v rovnakej výške po 24 mesiacoch od registrácie.

ZOZNAM VOZIDIEL, NA KTORÉ SA VZŤAHUJE DOTÁCIA NA PODPORU ELEKTROMOBILITY


Jazdné vlastnosti elektromobilov

elektromobil jazdne vlastnosti tesla model s electric gt
Zdroj: Electric GT

Jednou z mylných predstáv o elektromobiloch je, že majú slabú jazdnú dynamiku. Presný opak je pravdou. Vďačia za to skutočnosti, že ich maximálny krútiaci moment je dostupný už od prvej otáčky. Jeho výška je takmer zhodná s porovnateľnými vznetovými automobilmi. Z tohto dôvodu majú lepšie zrýchlenie a tzv. pružnosť, ktorá príde vhod predovšetkým pri predbiehacích manévroch, čo má priaznivý vplyv aj na bezpečnosť.

Pre ilustráciu uvádzame v nasledujúcej tabuľke parametre elektromobilov nižšej strednej triedy s ich analogickými spaľovacími súrodencami.

Model Nissan Leaf/Pulsar Hyundai Ioniq/i30 VW e-Golf/Golf
Výkon 81/85 kW 88/88 kW 85/81 kW
Hmotnosť v kg 1535/1290 1475/1290 1229/1585
Zrýchlenie z 0 na 100 km/h 11,5/12,7 s 9,9/11,9 s 10,4/9,9 s
Pružnosť z 80 – 120 km/h neznáma neznáma 8/10-13 s (4.-5. st.)
Max. rýchlosť v km/h 143/185 166/192 138/195

 

Pre upresnenie dodávame, že porovnávané spaľovacie automobily sú zážihové a vybavené automatickou prevodovkou. Menšou anomáliou je čas zrýchlenia VW Golf a jeho elektrického dvojčaťa, keďže „spaľovák“ je o pol sekundy rýchlejší ako elektrická verzia. Vďačí za to o 356 kg nižšej hmotnosti a dobre vyladenému turbu.

Čo sa týka hmotnosti, elektromobily sú kvôli batérii zhruba o 15 až 25 % ťažšie, takže pri rovnakej hmotnosti by bol rozdiel v prospech dynamických atribútov elektromobilov ešte výraznejší. Ako je vidno, batérie navyšujú hmotnosť elektromobilov dosť výrazným spôsobom. Na druhú stranu je táto hmotnosť „integrovaná“ do podlahy, pričom dochádza k významnému zníženiu ťažiska vozidla. Vďaka tomu majú elektromobily lepšie manévrovacie schopnosti.

Maximálna rýchlosť elektromobilov je elektronicky obmedzená z dôvodu optimalizácie dojazdu. A to na hodnotu, ktorá výrazne nenavyšuje spotrebu elektrickej energie. V tomto ohľade výrazne zaostávajú za svojimi spaľovacími kolegami. Na mieste je však otázka, ako často jazdíte vyššou rýchlosťou ako 130 km/h… Akcelerácia a pružnosť sú tak omnoho dôležitejšie atribúty ako maximálna rýchlosť.

 

Jazdné vlastnosti prémiových elektromobilov

Asi najlepším príkladom dynamických vlastností elektromobilov v prémiovom segmente je Tesla Model S P100D+. Tá je spolu s LaFerrari (a.k.a. Ferrari F150) najrýchlejšie akcelerujúcim sériovo vyrábaným automobilom na svete. 100 km/h dosiahne z pokoja za 2,5 sekundy. A to ešte Tesla chystá aktualizáciu, ktorá osamostatní Model S na vrchole pomyselného rebríčka. Dynamické vlastnosti všetkých verzií Modelu S nájdete v tomto článku Model S – výkon a jazdné vlastnosti.

V nasledujúcom videu si môžete pozrieť schopnosti Tesly Model S P100D, a to pred aktualizáciou, ktorá z nej urobila najrýchlejšie vozidlo planéty. Poráža v ňom pri počiatočnej akcelerácii Golf R, Shelby GT500, Lamborghini Huracan či Nissan GT-R.

Veľké 2,5 tonové SUV Tesla Model X P100D pokorí „stovku“ za 2,9 sekundy. Maximálna rýchlosť oboch Tesiel je elektronicky obmedzené na 250 km/h. Dynamické vlastnosti všetkých verzií Modelu S nájdete v článku Model X – výkon a jazdné vlastnosti.

Prémiový segment nie je len o Tesle. Zaujímavými parametrami sa môžu pochváliť aj elektromobily, ktoré sa pripravujú do sériovej výroby, ako Porsche Mission E (z 0 na 100 km/h za 3,5 s), Lucid Air (2,6 s), SUV Jaguar I-Pace (4,1 s), Faraday Future FF 91 (2,48 s) či chorvátske superšporty Rimac Concept One (2,6 s) a Concept S (2,5 s).

A to že elektromobily už dávno nie sú synonymom „lenivých“ áut, najlepšie asi dokumentujú závody elektrických formúl FIA Formula E a závody cestných elektromobilov FIA Electric GT. V nich sa tento rok predstaví 20 upravených elektromobilov Tesla Model S.

 

Bezpečnosť elektromobilov

elektromobil bezpecnost
Zdroj: CrashNet1 cez YT

Vďaka svojej konštrukčnej stavbe sú elektromobily bezpečnejšie minimálne v dvoch ohľadoch, pri porovnaní so štandardnými automobilmi. Keďže elektromobil nemá v prednej časti kapoty veľký, ťažký a pevný motor, výrazným spôsobom sa zväčšuje deformačná zóna, ktorá absorbuje nebezpečnú energiu pri čelnom náraze. A to predovšetkým pri elektromobiloch so zadným náhonom.

Vďaka hmotnosti batérie, ktorá je implementovaná do podlahy, sa významne znižuje ťažisko vozidla. To má veľký vplyv na jeho stabilitu. Automobil má tak oveľa menšiu tendenciu sa prevrátiť pri prudkých manévroch či dopravnej nehode.

Väčšina moderných elektromobilov je kvôli optimalizácii rekuperácie nastavená tak, že pri púšťaní plynového pedála dochádza k výraznému brzdeniu. Vďaka tomu sa skracuje reakčný čas začiatku brzdného manévru.

Súčasné elektromobily v podstate nie je možné kúpiť bez bohatej bezpečnostnej výbavy, ktorá obsahuje aj najmodernejších jazdných asistentov. Obzvlášť treba upozorniť na autonómne systémy riadenia. Najlepším príkladom je Tesla Autopilot, ktorého 1. generácia preukázateľne znížila nehodovosť o 38,5 %. Tesla však už disponuje 2. generáciou Enhanced Autopilota, o ktorej sa Elon Musk vyjadril, že dokáže znížiť nehodovosť až o neuveriteľných 90 %.

Za všetky elektromobily spomenieme Teslu Model S, ktorá bola najbezpečnejším automobilom v histórií crash testov americkej bezpečnostnej dopravnej agentúry NHTSA. V testoch európskeho ekvivalentu Euro NCAP dosiahla samozrejme plný počet hviezdičiek. Podrobnosti o bezpečnosti Modelu S nájdete na našom partnerskom webe v sekcii Tesla Model S – bezpečnosť.

tesla model s nhtsa bezpecnost crash testy
Výsledky testu NHTSA. Zdroj: safercar.gov

 

Elektromobily – predaj

S postupným zdokonalovaním, rozširovaním portfólia a dotovaním elektromobilov zo strany vlád, predaj elektromobilov každoročne narastá. Od roku 2011, kedy sa predalo cca 55 000 elektromobilov, vzrástli ročné predaje elektromobilov v západnej Európe, USA, Číne, Kanade a Japonsku 13-násobne, tzn. o 1 300 %.

elektromobily predaj
Vývoj predaja elektromobilov od roku 2011. Zdroj: Mario Roberto Durán Ortiz

V celkových kumulatívnych číslach sa do decembra 2016 predalo v Európe, USA a Číne spolu viac ako 1 853 000 elektromobilov. Absolútnou svetovou raritou v predajoch elektromobilov je Nórsko. V tejto zhruba 5 miliónovej krajine sa predalo už vyše 135 000 elektromobilov, čo je len o 12 000 menej ako v 126 miliónovom Japonsku, kde je viac nabíjacích staníc ako klasických „čerpačiek“. Na počtom obyvateľov porovnateľnom Slovensku jazdilo v novembri 2016 cca 400 elektromobilov. Po dotáciách na elektromobily zo strany štátu síce záujem stúpol, ale Nórsko asi tak skoro nedoženieme. 🙂

predaje elektromobilov
Kumulatívne predaje elektromobilov do decembra 2016. Zdroj: Mario Roberto Durán Ortiz

Ak vás zaujímajú predaje konkrétnych elektromobilov a plug-in hybridov za rok 2016 v Európe, informácie nájdete na našom partnerskom webe v článku Predaje áut do zásuvky v Európe za rok 2016: Tesla s 8 % podielom.

 

Elektromobily dostupné na Slovensku

elektromobily na slovensku
Zdroj: insideevs.com

 

Je elektromobil skutočne ekologický!?!?

Často sa hovorí o tom, že elektromobily vôbec nie sú také ekologické, ako sa to verejne prezentuje. Mnohé strany trošku nepochopiteľne argumentujú tým, že pri výrobe elektrickej energie, ktorá poháňa elektromobily, produkujú jej výrobcovia emisie.

Po prvé to vôbec nemusí byť pravdaŠtúdia Nórskej vedeckej a technickej univerzity hovorí o tom, že elektromobily nabíjané v Európe, produkujú určite menej emisií ako automobily so spaľovacími motormi. A to vďaka spôsobu výroby elektrickej energie, ktorá prebieha z väčšiny ekologicky.

 

Na Slovensku ešte ekologickejší

Na Slovensku sme na tom ešte lepšie ako je celoeurópsky priemer. Slovenské elektrárne vyrobili v roku 2016 80 % elektriny z jadra, 10 % v rámci vodných elektrárni a len 10 % je zo spaľovania uhlia a biomasy. Pričom získavanie energie z biomasy je tiež, minimálne z časti, ekologické. A to hlavne vďaka recyklácii. Pre istotu uvádzame, že jadrové elektrárne neprodukujú žiadne primárne emisie. Na druhej strane, dôsledkom ich činnosti vzniká nebezpečný jadrový odpad, ale aj na tom sa pracuje… Viď napríklad článok Diamantová batéria z rádioaktívneho odpadu má životnosť 5730 rokov, kde sa počíta s využitím radioaktívneho odpadu pri výrobe batérii zapečatených do diamantu.

je elektromobil ekologicky zdroje elektrickej energie slovensko 2016
Podiel primárnych energetických zdrojov na dodanej elektrine na Slovensku v roku 2016. Zdroj: saes.sk

Po druhé, ak aj elektromobily spotrebúvajú neekologicky vyrobenú energiu, neprodukujú pritom ďalšie emisieNaproti tomu sa produkujú emisie pri ťažbe ropy, jej spracovaní, transporte, predaji a samozrejme pri spaľovaní nafty a benzínu. Navyše, zvýšený odber energie v nočnom čase, kedy sa elektromobily v drvivej väčšine nabíjajú, zeefektívňuje jej výrobu, čím nepriamo dochádza k znižovaniu emisií.

Po tretie, pri takomto spôsobe myslenia, by sme mohli povedať, že všetko okolo nás, čo používame produkuje emisie. Toaletný papier, pero, TV, PC, bavlnené tričko atď… Na výrobu týchto vecí je nutná elektrická energia, plus v rámci samotných výrobných procesov môžu vznikať ďalšie emisie. Takže máme prestať kupovať a používať všetky bežne veci a elektrické spotrebiče (áno aj používanie el. spotrebičov je touto logikou považované za znečisťovanie ovzdušia) alebo sa máme na všetko vykašľať a nerobiť nič? To by sa samozrejme záujmovým skupinám, ktoré vypúšťajú podobné fámy určite páčilo.

 

Dôraz na ekologickú výrobu

Na druhej strane je objektívnym faktom, že výroba elektromobilu zanecháva väčšiu ekologickú stopu, ako je tomu pri bežnom automobile. A to kvôli batérii, pri výrobe ktorej sa používajú nebezpečné chemikálie. Na túto tému vzniklo mnoho štúdií, ktorých zverom je, že elektromobil sa stáva ekologickejším ako „spaľovák“ priemerne už po 3 000 km. A to z ohľadom na výrobu elektriny, ako aj ekologickú stopu pri jeho výrobe.

Treba však povedať aj to, že výrobcovia elektromobilov sú pod veľkým ekologickým drobnohľadom ohľadom ekologickosti výrobného procesu. Samozrejme nie len z tohto dôvodu dbajú na to, aby vyrábali svoje produkty čo „najzelenšie“. Napríklad najpredávanejší elektromobil sveta Nissan Leaf sa vyrába v továrni, ktorá je napájaná elektrinou z obnoviteľných zdrojov. Továreň Tesla Gigafactory, v ktorej sa budú vyrábať Li-Ion batérie a pohonné jednotky do Tesly model 3, bude napájaná zo solárnych panelov umiestnených na jej streche a veternej energie. Celková plocha týchto panelov by mala byť až 1,2 milióna m².

tesla gigafactory
Vizualizácia Gigafactory 1 po jej očakávanom dokončení v roku 2020. Zdroj: Tesla

 

Stále je čo zlepšovať

Treba si uvedomiť, že nič pri svojom vzniku nie je dokonalé. Áno, ani elektromobily a hlavne nie ich batérie. Tie sú tiež pod paľbou kritiky z dôvodu ekologickosti ich likvidácie. Samozrejme batérie a ich obsah by mohli byť pre našu prírodu veľkým problémom. Podstatné je, že sa to myslí, ešte pred spustením ich masovej výroby. Zároveň s ich zdokonaľovaním sa pracuje aj na možnostiach ich ekologickej likvidácie, keď dôjde ku koncu ich životnosti. Okrem toho sa hľadajú spôsoby ich recyklácie, pretože takéto články je možné využívať na iné účely. Neostanú tak ležať niekde na skládke, ale stanú sa súčasťou iného energetického systému, kde nie nutná ich pôvodná kapacita.

Áno, súčasná elektromobilita má od dokonalosti ešte ďaleko, ale nechápeme prečo by sme jej mali hádzať pod nohy polená, keď sa ešte ani poriadne nerozbehla. Prečo silou mocou hľadať negatíva a poukazovať na ne, keď vieme, že sme ešte len na začiatku cesty a všetko sa bude zdokonaľovať. Veď aké boli napríklad prvé počítače…? Obrovský potenciál elektromobility sa nedá spochybniť. A ten kto to robí, … do vlastného hniezda.

A to nemám na mysli len záujmové skupiny a lobby ropných spoločností. Stačí sledovať názory zo svojho okolia. Ľudia majú tendenciu všetko spochybňovať, a to väčšinou aj keď o danej problematika nemajú potuchy. A možno prevažne vtedy. Zrejme zažívajú pri spochybňovaní pocit dôležitosti, keď už sami nedokážu tvoriť hodnoty. Áno bez kritiky, by sa nebolo možné posúvať ďalej, ale tá musí byť konštruktívna!

Týmto samozrejme netvrdíme, že elektromobilita je spasením našej planéty. Je to však dôležitý krok, ktorý treba určite podporovať všetkými desiatimi. Momentálne lepšiu víziou nemáme. Keď sa objaví nová a prospešnejšia technológia či vízia, nebudeme mať problém ju podporiť…


Zdroje: TeslaMagazin.sk, Gijs Mom. The Electric Vehicle: Technology and Expectations in the Automobile Age. 2013. ISBN: 978-1-4214-0970-2, pro-energy.cz

Zdroj: Elektromobil info – všetko čo potrebujete vedieť o elektromobiloch

Tesla Model S P100D 2017 Recenzia 

Tesla Model S P100D 2017 recenzia

Tesla Model S P100D je blisteringly rýchlo a teraz má dosah 381 míľ, ale to všetko má svoju cenu.

Zdá sa, že za týždeň nemôže ísť, bez Tesla CEO Elon Musk vyhlasovanie ešte ďalší výkon a inovácie pre svoju jedinečnú škálu all-elektrickým pohonom.

Začiatkom tohto mesiaca, pižmo odhalil “veľkonočné vajíčko”, čím by over-the-air softvér vstrekovať už smiešne Model S prídavným 33bhp, sekal na 0-60mph čas 2,4 sekundy. Tomu sa hovorí režim absurdné Plus, a je ovládateľný cez obrovské iPad štýlu dotykovou obrazovkou.

Je to pre-Egg P100D ideme sem prvýkrát, však, čo znamená, že meradlo šprint trvá sotva letargický desatinu sekundy dlhšie.

Stále monumentálno rýchlo, potom? Absolútne. Tesla Model S P100D nahradí P90D a cíti sa celkom na rozdiel od nič iného na ceste. Dokonca aj Porsche 911 Turbo S s jeho trik kontrolným spustenie systému cíti pomalý v porovnaní s okamžitým momentom v Tesla.

Kým naši GPS zaznamenanej skúšky čísla nemohla lepších 3,3 sekundy, spôsob, akým P100D zrýchľuje sa proste strašná. Spech ako vy zasadiť škrtiacej klapky vynúti vnútornosti proti sedadlá, potrestanie svoje telo tak prudko, že opakujúci sa proces viac ako raz je dosť, aby aj tie s oceľovou žalúdkom cítiť trochu nevoľno.

Ale nie je to len z pokoja, že táto nová P100D otrasy a omráči. Križovanie pri konštantnej 40 mph, bude Model S poruší národný rýchlostný limit v mihnutia oka – a ďalej k elektronicky obmedzená 155mph. Tesla publikuje ‘rýchlosť stretávacie “z 45-65mph do 1,2 sekundy.

Pravdepodobne Teslov najväčší nárok keď je podpora v celkovom rozsahu. Kým šéfovia ochotne priznávajú, že v reálnom svete rozsah klesnú v chladnom počasí, na plné nabitie táto nová P100D urobí 381 míľ keď je vystavený na NEDC cyklu. To je oproti 316 míľ na dnes už zaniknutý P90D a plných 128 míľ viac ako verzia entry-level 60D. Využitie tohto okamžité zrýchlenie bude vidieť tie čísla klesať celkom rýchlo, samozrejme.

Na rozdiel od menších 60kWh a 75kWh modelov P100D je k dispozícii len s Dual Motor všetkých kolies hnacieho systému Tesla, ponúka až impozantný trakciu v súčasnom chladnom počasí. Je tu veľmi málo nakláňanie karosérie vďaka tomu sú batérie namontované tak nízko, zatiaľ čo riadenie je dobre zváži. Neponúka obrovské množstvo pocit, ale je to sedan nie je športové vozidlo, po všetkom.

Majitelia milujú svoje tech-obťažkané limuzín a SUV – o čom svedčí naša Driver Power prieskumu vlani. Cez výhrady k rozsahu a použiteľnosti, model S bol hodnotený špičku v siedmich z celkovo 10 kategórií v minulom roku, vrátane plnenia (predvídateľne), praktickosť a jednoduchosť jazdy. Autopilot softvér je stále niektorá tá najchytrejší akéhokoľvek vozidla na predaj, a berie stres z rušného diaľničného jazdy.

Kvalita zostáva problematickým bodom pre nás, však. Známe ale starnutie Mercedes rozvádzača je pekne integrované, ale fit a cieľ je sporná. Obrovský portrét Dotykový displej je jedinečný v tejto triede, ale nový E-Class zahanbuje Modelu S, pokiaľ ide o dizajn interiérov.

Kľúčové špecifikácie
Model: Tesla Model S P100D
cena: £ 129.400
Batérie: 100kWh
Výkon / krútiaci moment: 595bhp / 967Nm
Prevodovka: Single-rýchlostný pohon auto, štyri kolesá
0-60mph: 2.5 sekundy
Najvyššia rýchlosť: 155 mph
Rozsah: 381 mil
CO2: 0 g / km
Na predaj: Now

ZDROJ: autoexpress.com.uk

Zdroj: Tesla Model S P100D 2017 Recenzia – CARS tiež požičovňu jazdných